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4.2 Network Flows

I A directed graph can model a flow network where some material
(e.g., widgets, current, . . . ) is produced or enters the network at
a source and is consumed at a sink.

I Production and consumption are at a steady rate, which is the
same for both.

I The flow of the material at any point in the system is the rate at
which the material moves through it.
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Modeling

I Flow networks can be used to model:

I liquids through pipe

I parts through an assembly line

I current through electrical networks

I info through communication networks

I Each directed edge is a conduit for the material.

I Each conduit has a stated capacity given as a maximum rate at
which the material can flow through the conduit. (e.g., 200 barrels
of oil per hour.)
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A Network Flow Example
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A flow network for the Lucky Duck Puck factory, located in
Vancouver, with warehouse in Winnipeg.

Each edge is labeled with its capacity.

from: Introduction to Algorithms, by Cormen, Leiserson, & Rivest
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Example Details

I The Lucky Duck Company has a factory (source s) in Vancouver
that manufactures hockey pucks.

I They have a warehouse (sink t) in Winnipeg that stores them.

I They lease space on trucks from another firm to ship the pucks
from the factory to the warehouse — with capacity c(u, v) crates
per day between each pair of cities u and v .

Goal: determine p, the largest number of crates
per day that can be shipped, and then produce this
amount — there’s no sense in producing more pucks
than they can ship to their warehouse.
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I The rate at which pucks are shipped along any truck route is a
flow.

I Maximum flow determines p, the maximum number of crates per
day that can be shipped.

I The pucks leave the factory at the rate of p crates per day, and p
crates must arrive at the warehouse each day:

p p

Vancouver Winnipeg
s t
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I Shipping time is not a concern, only the flow of p crates/day.

I Capacity constraints are given by the restriction that the flow
f (u, v) from city u to city v be at most c(u, v) crates per day.

I In a steady state, the number of crates entering and the number
leaving an intermediate city must be equal.
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Flow Conservation

I Vertices are conduit junctions. Other than the source and sink,
material flows through the vertices without collecting in them.

I Hence, the rate at which material enters a vertex must equal the
rate at which it leaves the vertex.

I This property is called flow conservation, and is similar in
concept to Kirchhoff’s Current Law concerning electrical current.
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Maximum–flow

The Maximum–flow problem is the simplest problem concerning
flow networks:

What is the greatest rate at which material can
be shipped from source to sink without violating
any capacity constraints?
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Assumptions

A flow network, G = (V, E), is a directed graph in which each
edge (u, v) ∈ E has a non–negative capacity c(u, v) ≥ 0.

If (u, v) 6∈ E, we assume c(u, v) = 0.

∀x ∈ E, In(x) and Out(x) are the edges into and out of vertex x .

The integer c(e) associated with edge e is a capacity or upper
bound.
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A flow f with value |f | = 19.
Only positive net flows (crates shipped) are shown.

If f (u, v) > 0, edge (u, v) is labeled by f (u, v)/c(u, v).
If f (u, v) ≤ 0, edge (u, v) is labeled only by its capacity.
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Tucker: a–z (Source to Sink) Flow φ

I An a–z flow φ in a directed network N is an integer–valued
function φ defined on each edge e.

I φ(e) is the flow in e, together with a source vertex a and a sink
vertex z satisfying the following three conditions:

1. Capacity Constraint: 0 ≤ φ(e) ≤ c(e)
We don’t want backflow, nor to exceed any edge’s capacity

2. φ(e) = 0 if e ∈ IN(a) or e ∈ OUT(z)
We want the flow to go from source to sink, not vice–versa

3. Flow Conservation:
For x 6= a or z,

∑
e∈IN(x) φ(e) =

∑
e∈OUT (x) φ(e)

For every vertex other than the source and sink, the flow into and
out of that vertex must be equal
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Flow Networks
A flow in G is a real–valued function f : V × V → < that satisfies
the following three properties:

1. Capacity constraint: the flow along an edge cannot exceed its
capacity:

∀ u, v ,∈ V , f (u, v) ≤ c(u, v)

2. Skew symmetry: the flow from a vertex u to a vertex v is the
negative of the flow in the reverse direction:

∀ u, v ∈ V , f (u, v) = −f (v , u)

3. Flow conservation: the net flow of a vertex (other than the
source or sink) is 0:

∀ u ∈ V − {s, t},
∑

v∈V
f (u, v) = 0
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I The quantity f (u, v), which can be positive, negative, or zero, is
called the flow from vertex u to vertex v .

I The value of a flow f is defined as:

|f | =
∑

v∈V f (s, v) =
∑

v∈V f (v , t).

I.e., the total flow out of the source or into the sink.

I In the maximum–flow problem, we are given a flow network G
with source s and sink t, and we wish to find a flow of maximum
value from s to t.
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1. (By skew symmetry) The flow from a vertex to itself is 0, since
for all u ∈ V , we have f (u, u) = −f (u, u)

2. (By skew symmetry) We can rewrite the flow–conservation
property as the total flow into a vertex is 0:

∀ v ∈ V − {s, t},
∑

u∈V
f (u, v) = 0
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Flow In Equals Flow Out

1. The total positive flow entering a vertex v is defined by

∑

u∈V ,f (u,v)>0

f (u, v)

2. The total positive flow leaving a vertex v is defined by

∑

u∈V ,f (v ,u)>0

f (v , u)

3. The positive net flow entering a vertex (other than the source or
sink) must equal the positive net flow leaving the vertex.
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There can be no flow between u and v
if there is no edge between them.

If there is no edge between u and v , i.e., (u, v) 6∈ E and
(v , u) 6∈ E , then:

I If there is no edge, then the capacity is zero.
And by the Capacity Constraint, the flows must be ≤ 0.

c(u, v) = c(v, u) = 0 ⇒ f(u, v) ≤ 0, f(v, u) ≤ 0

I By skew symmetry, the flow must be zero.

f(u, v) = −f(v, u) ⇒ f(u, v) = f(v, u) = 0
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Cancellation

I Cancellation allows us to represent the shipments between two
cities by a positive flow along at most one of the two edges
between the corresponding vertices.

I If there is zero or negative flow from one vertex to another, no
shipments need be made in that direction.

I Any situation in which pucks are shipped in both directions
between two cities can be transformed using cancellation into
an equivalent situation in which pucks are shipped only in the
direction of positive flow.

I No constraints are violated since the net flow between the two
vertices is the same.
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Cancellation in General

I Suppose edge (u, v) has flow value f (u, v)

I Now, increase the flow on the on edge (v , u) by some amount d

I Mathematically, this operation must decrease f (u, v) by d

I Conceptually, we can think of these d units as canceling d units
of flow that are already on edge (u, v)
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Cancellation Example

10

2/4

(e)

8/10

3/4

(c)

4

5/10

(d)

4

8/10

(b)

4

10

(a)

v2

v1

v2

v1

v2

v1

v2

v1

v2

v1

(a) Vertices v1 and v2, with c(v1, v2) = 10 and c(v2, v1) = 4

(b) Net flow when 8 crates per day are shipped from v1 to v2.

(c) An additional shipment of 3 crates per day from v2 to v1.

(d) By canceling flow going in opposite directions, we can represent
the situation in (c) with positive flow in one direction only.

(e) Another 7 crates per day shipped from v2 to v1 results in a net
of 2 crates per day from v2 to v1.
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Flow Cuts

I A cut(S, T) of flow network G = (V, E), is a partition of V into
S and T = V - S, such that source ∈ S and sink ∈ T.

I If f is a flow, then the net flow across the cut(S ,T ) is defined
to be f (S ,T ).

I The capacity of the cut(S ,T ) is c(S ,T ).
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Cut Example
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cut({a, v1, v2}, {v3, v4, z}) has net flow:
f (v1, v3) + f (v2, v3) + F (v2, v4) = 12 − 4 + 11 = 19.

And, its capacity is: c(v1, v3) + c(v2, v4) = 12 + 14 = 26.
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Ford–Fulkerson Method

Each iteration will increase the flow until

the maximum is reached

Ford-Fulkerson Method (G, s, t)

initialize flow f to 0

while there exists an augmenting path p

augment flow f along p

return f
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Ford–Fulkerson Solution

The Ford–Fulkerson Method for solving the maximum–flow
problem depends on three key concepts:

1. residual networks

2. augmenting paths

3. cuts
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Residual Networks

Given a flow network and a flow, the residual network consists of
edges that can accommodate more net flow.

I Suppose we have a flow network G = (V, E), with source s and
sink t.

I Let f be a flow in G; consider a pair of vertices u, v ∈ V.

I The amount of additional flow we can push from u to v before
exceeding the capacity c(u, v) is the residual capacity of (u,
v) given by:

cf (u, v) = c(u, v)− f (u, v)

I For example, if c(u, v) = 16 and f (u, v) = 11, we can ship
cf (u, v) = 5 more units before we exceed capacity.
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I When the flow is negative, the residual capacity is greater
than the capacity

E.g., c(u, v) = 16, f (u, v) = -4, so cf (u, v) = 20

I This can be interpreted to mean:

1. There is a flow of 4 units from v → u, which we can cancel by
pushing a flow of 4 units from u → v.

2. We can then push another 16 units from u → v before violating
the capacity constraint on edge (u, v).

3. We have thus pushed an additional 20 units of flow, starting with
a flow f (u, v) = −4, before reaching the capacity constraint.
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I Given a flow network G= (V, E) and a flow f , the residual
network of G induced by f is Gf = (V ,Ef ), where:

Ef = {(u, v) ∈ V × V : cf (u, v) > 0

I.e., the Residual network consists of edges that can
accommodate more net flow.

I Each edge of the residual network (residual edge), can admit a
strictly positive new flow.

I Notice (u, v) may be a residual edge in Ef even if it was not an
edge in E — i.e., it could be the case that Ef 6⊂ E .
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I Because an edge (u, v) can appear in a residual network only if
at least one of (u, v) and (v, u) appears in the original network,
we have the bound: |Ef | ≤ 2|E |.

I Observation: the residual network Gf is itself a flow network
with capacities given by cf .

I Lemma. Let G = (V, E) be a flow network with source s and
sink t, and let f be a flow in G. Let Gf be the residual network
of G induced by f , and let f ′ be a flow in Gf . Then the flow
sum f + f ′ is a flow in G with value:

|f + f ′| = |f |+ |f ′|

This lemma shows how a flow in a residual network relates to a
flow in the original flow network.
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Augmenting Paths

I Given a flow network G = (V, E) and a flow f , an augmenting
path p is a simple path from s to t in the residual network Gf .

I By the definition of the residual network, each edge (u, v) on
an augmenting path admits some additional positive flow from
u to v without violating the capacity constraint on the edge.

I The maximum amount of flow we can ship along the edges of
an augmenting path p is the residual capacity of p given by:

cf (p) = min{cf (u, v) : (u, v) is on p}
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Lemma. Let G = (V, E) be a flow network, let f be a flow in G,
and let p be an augmenting path in Gf . Define a function
fp : V × V → < by:

fp(u, v) =





cf (p) : if (u, v) is on p

−cf (p) : if (v , u) is on p

0 : otherwise
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I If we add fp to f, we get another flow in G whose value is closer
to the maximum.

I Corollary. Let G = (V, E) be a flow network, let f be a flow in
G, and let p be an augmenting path in Gf . Let fp be defined as
in the previous lemma. Define a function f ′ : V × V → < by
f ′ = f + fp. Then f ′ is a flow in G with value:

|f ′| = |f |+ |fp| > |f |
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Flow Network G and Flow F
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Residual network Gf
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Residual network Gf with augmenting path p indicated;
its residual capacity is cf (p) = c(v2, v3) = 4
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Resulting Flow After Augmenting
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Resulting flow in G from augmenting path p
by its residual capacity
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New Residual Network
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Residual network induced by the flow in (c)
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Cuts of Flow Networks

The Ford–Fulkerson method repeatedly augments the flow along
augmenting paths until a maximum flow has been found.

The max–flow min–cut theorem tells us a flow is maximum

IFF

its residual network contains no augmenting path.
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The Max–flow Min–cut Theorem

I Lemma. Let f be a flow in a flow network G with source s and
sink t, and let (S, T) be a cut of G. Then the net flow across
(S, T) is f(S, T) = |f |.

I Corollary. The value of any flow f in a flow network G is
bounded from above by the capacity of any cut of G.

I Max–flow min–cut Theorem. If f is a flow in a flow network
G = (V, E) with with source s and sink t, then the following
conditions are equivalent:

1. f is a maximum flow in G

2. The residual network Gf contains no augmenting paths

3. |f | = c(S, T) for some cut (S, T) of G
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The Basic Ford–Fulkerson Algorithm
I Each iteration of the Ford–Fulkerson method,

finds any augmenting path p and augments flow f along
p by the residual capacity cf (p)

I The Ford–Fulkerson method computes the maximum flow in a
graph G = (V, E) by updating the net flow f (u, v) between
each pair of vertices that are connected by an edge.

If u and v are not connected by an edge, assume f (u, v) = 0

I Assume the capacity from u to v is provided by a
constant–time function c(u, v) with:

c(u, v) = 0 if (u, v) 6∈ E

I The residual capacity is computed as
cf (u, v) = c(u, v)− f (u, v), represented by c(p) in the
algorithm.
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Ford-Fulkerson (G, s, t)

1 for each edge (u, v) in E[G]

2 f[u, v] = 0

3 f[v, u] = 0

4 while there exists a path(s, t) in the

residual network Gf

5 cf(p) = min{cf(u, v): (u, v) in p}

6 for each edge (u, v) in p

7 f[u, v] = f[u, v] + cf(p)

8 f[v, u] = -f[u,v]

Lines 1 – 3 initialize the flow f to 0

The while loop repeatedly finds an augmenting path p in Gf ,
augments flow f along p by the residual capacity cf (p)

When no augmenting path exists, flow f is a maximum flow.

39

Time Analysis — Assuming Integer Capacities

I Initialization, lines 1 – 3: Θ(|E |)

I The while loop of lines 4 – 8 is executed at most O(|f ∗|) times,
where f ∗ is the maximum flow found by the algorithm, since
the flow value increases by at least one unit in each iteration.

I Let m(p) = time to find a path with minimum residual
capacity, and
max = the maximum number of edges in such a path.
Then the overall run time is:

O(E + |f ∗|(m(p) + max))
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Successive iterations of the Ford–Fulkerson algorithm are shown on
the next set of slides.

On each slide, the first graph (on left) shows the residual network
Gf with an augmenting path p.

The second graph (right) shows the new flow f that results from
adding fp to f .
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(a) The residual network (left) is the input network G
On right is the new, resulting flow
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(b) The next augmenting path, with new flow
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(c) The next augmenting path with, new flow
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(d) The last augmenting path, with new flow
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(e) No augmenting paths remain;
flow shown in (d) is maximum flow
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Worst Case Example
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(a) A flow network for which the algorithm
can take Θ(E |f ∗|) time

An augmenting path with residual capacity 1 is shown.
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(b) Another augmenting path with residual capacity 1,
with the resulting residual network.

Eventually, the maximum flow
of |f ∗| = 2,000,000 will be reached.
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Edmonds–Karp Algorithm

I The bound on the Ford–Fulkerson algorithm can be improved if
the computation of the augmenting path p (in line 4) is
implemented with a breadth–first search.

I That is, if the augmenting path is a shortest path from s to t in
the residual network, where each edge has unit distance
(weight).

I The algorithm will then run in O(VE 2) time.
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4.3 Algorithmic Matching

I Some combinatorial problems can easily be cast as
maximum–flow problems.

I One example: finding a maximum matching in a bipartite graph.

I The problem: Given an undirected graph G = (V, E), a
matching is a subset of edges M ⊆ E 3 ∀v ∈ V , at most one
edge of M is incident on v .
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Fig 1. Bipartite graph G = (V, E), vertex partition V = L ∪ R
(a) A matching with cardinality 2
(b) A maximum matching with cardinality 3
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I Vertex v ∈ V is said to be matched by matching M if some
edge in M is incident on v ; otherwise v is unmatched.

I A maximum matching is a matching of maximum cardinality:
a matching M 3 for any matching M ′, we have |M| ≥ |M ′|.

I We are interested in finding maximum matchings in bipartite
graphs.

I Assume the vertex set can be partitioned into V = L∪R, where
L and R are disjoint and all edges in E go between L and R.
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Recast as a Flow Network Problem
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A Practical Application

I One (of many) practical application: matching a set L of
machines with a set R of tasks to be performed
simultaneously.

I The edge < u, v >∈ E indicates a particular machine u ∈ L is
capable of performing a particular task v ∈ R

I A maximum matching provides work for as many machines as
possible.
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Finding a Maximum Bipartite Matching

I We can use the Ford–Fulkerson method to find a maximum
matching in an undirected bipartite graph, G + (V, E), in time
polynomial in |V | and |E |.

I The trick is to construct a flow network in which flows
correspond to matchings.
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Fig. 2. The flow network corresponding to a bipartite graph.
(a) Bipartite graph with vertex partition from Fig. 1.
(b) Corresponding flow network with a maximum flow shown.

Each edge has unit capacity. Large arrows have a flow of 1, and all other edges

carry no flow. The large arrows from L to R correspond to those in a max

matching of the bipartite graph.
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The corresponding flow network G ′ = (V ′,E ′) for the bipartite
graph G is defined as:

I Let the source s and sink t be new vertices not in V , and let
V ′ = V sup{s, t}.

I If the vertex partition of G is V = L ∪ R, the directed edges of
G ′ are given by:

E ′ = {< s, u > : u ∈ L} ∪
{< u, v > : U ∈ L, v ∈ R, and < u, v > ∈ E} ∪
{< v , t > : v ∈ R}

I I.e., the edges from the source node to nodes in L, the original
edges from L to R, and the edges from the nodes in R to the
sink node.

I We then assign unit capacity to each of these edges in E ′
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I A matching in G corresponds directly to a flow in the
corresponding flow network G ′.

I A flow f on a flow network G = (V ,E ) is integer–valued if
f (u, v) is an integer ∀ < u, v >∈ V × V .

I Lemma. Let G = (V ,E ) be a bipartite graph with vertex
partition V = l ∪ R, and let G ′ = (V ′,E ′) be its corresponding
flow network.

If M is a matching in G , then there is an integer–valued flow f
in G ′ with value |f | = |M|.
Conversely, if f is an integer–valued flow in G ′, then there is a
matching M in G with cardinality |M| = |f |.
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I Intuitively, a maximum matching in a bipartite graph
corresponds to a maximum flow in its corresponding flow
network.

I We can compute a maximum matching in a bipartite graph by
finding a maximum–flow in its flow network.

I The only possible problem: the maximum–flow algorithm might
return a flow which consists of non–integral amounts (which
would not lead to a good match).
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I The following theorem shows that if we use the Ford–Fulkerson
method, this difficulty cannot arise.

I Theorem 1. (Integrality theorem). If the capacity function c
takes on only integral values, then the maximum flow f
produced by the Ford–Fulkerson method has the property |f | is
integer–valued.

Moreover, for all vertices u and v , the value of f (u, v) is an
integer.

Proof is by induction on the number of iterations.
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Corollary (to Lemma 1). The cardinality of a maximum matching
in a bipartite graph G is the value of a maximum flow in its
corresponding flow network G ′.

Proof is by contradiction.
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