Week 5 & Review

Applications

Interval Graph

2.4 Theorems

Fisk's

More Theorems

Mat 3770 Week 5

Spring 2014

Week 5 — Student Responsibilities

Mat 3770 Week 5

Week 5 & Review

Applications

Interval Graph

2.4 Theorems

Fisk's

More Theorems Reading: Edge Counting, Planarity (See Syllabus schedule)

■ Hwk from Tucker – 2.4

■ Hwk from Rosen – 9.8

Attendance Sprightfully Encouraged

What is the Chromatic Number of this Graph?

Mat 3770 Week 5

Week 5 & Review

Applications

Interval Graph

2.4 Theorems

Fisk's

More Theorems

An Example Coloring

Mat 3770 Week 5

Week 5 & Review

Applications

Interval Graph

2.4 Theorems

Fisk's

More Theorems

Graph Coloring Applications—VLSI Chip Design

Mat 3770 Week 5

Week 5 & Review

Applications

Interval Graph
2.4 Theorems

Fisk's

i iok o

More Theorems **VLSI**: Very Large Scale Integrated Chip Design—the "brains" of a computer

Gates: logical sub-circuits in a computer chip which are composed of electronic switches

Possibilities in chip manufacturing:

- Most expensive: Custom fabricated chips
- Medium expense: Semi-custom chips
- Least expensive: "Off—the—Shelf" chips

Semi-Custom Design

Mat 3770 Week 5

Using Pre-fabricated Chips

Week 5 & Review

Applications

Interval Graph

2.4 Theorems

Fisk's

More Theorems

- fabricated up to the inter-connection phase
- reduces overall cost of manufacturing chips
- example: Programmable Logic Arrays (PLA)
 - gates are laid out in rows $(G_1, G_2, ..., G_n)$ with specified connections between certain pairs, G_i and G_j , given as $(\langle i, j \rangle)$
 - connections are laid out in parallel tracks (columns)
 - no connections may overlap, not even at an endpoint
 - we want to minimize the number of tracks required

A Programmable Logic Array Example

Mat 3770 Week 5

Week 5 &

Applications

Interval Graph

2.4 Theorems

Fisk's

More Theorems Suppose we want the following Gate connections

$$<1, 3>$$
 $<1, 3>$ $<2, 3>$ $<2, 4>$ $<2, 5>$ $<4, 5>$

The layout below "realizes" these connections using 5 tracks

Minimizing the Layout

Mat 3770 Week 5

Week 5 & Review

Applications

Interval Gra

2.4 Theorems

Fisk's

More Theorems If we have the time and money, we can re-arrange rows and improve the routing phase. Notice that gates in rows 1 & 3 want to be together, as do gates in rows 2 & 3, and in 4 & 5

We get very good improvement: from 5 tracks down to just 3.

How is this modeled in a program? With a graph. We can use a force–directed algorithm, which acts like springs attached to the rows so those with many connections are more attracted than those with fewer.

Interval Graph

Mat 3770 Week 5

Week 5 & Review

Applications

Interval Graph

2.4 Theorems

Fisk's

More Theorems Interval Graph: a graph G with a one—to—one correspondence between its vertices and a collection of intervals on the line such that two vertices of G are adjacent when the corresponding intervals overlap.

 Example applications: competition graph (used in ecology; species compete for survival), VLSI routing problems (PLA folding).

Week 5 & Review

Applications

Interval Graph

2.4 Theorems

Fisk's

 Given the VLSI design problem of connecting the rows of gates:

(1,	3)	(1,	3)	(2,	3)
(2	4)	(2	5)	(1	E)

we can model the problem of determining the minimum number of tracks by finding the **Chromatic Number** of a related interval graph.

Week 5 & Review

Applications

Interval Graph

2.4 Theorems

Fisk's

- Let vertices be the connection pairs, and consider them as intervals, for example: $(1, 3) \rightarrow [1..3]$
- Let edges join intervals without overlap.
- The minimum number of tracks will be the Chromatic Number of the graph since intervals can share a track only if they do not overlap.

Consider: K₅ Subgraph

Mat 3770 Week 5

Week 5 & Review

Applications

Interval Graph

2.4 Theorems

Fisk's

Moro

More Theorems ■ A complete graph, K_5 , requires 5 colors (and we cannot color it in fewer colors).

■ Thus, we need at least 5 tracks.

Another Example

Mat 3770 Week 5

Week 5 & Review

Applications

Interval Graph
2.4 Theorems

Fisk's

More Theorems ■ The largest complete graph in the figure below is a triangle, therefore it requires 3 colors (and we cannot color it in 2 colors)

■ Thus we need only 3 tracks when the rows are rearranged.

Sec. 2.4—Coloring Theorems

Mat 3770 Week 5

Week 5 & Review

Applications

Interval Graph

2.4 Theorems

FISK S

More Theorem Polygon: a planar graph consisting of a single circuit with edges drawn as straight lines.

- Triangulation of a Polygon: the process of adding a set of straight-line chords between pairs of vertices of the polygon so that all interior regions are bounded by a triangle.
- Note: Chords cannot cross each other nor the sides of the polygon.

Example of a Triangulated Polygon

Mat 3770 Week 5

Week 5 &

Applications

Interval Graph

2.4 Theorems

Fisk's

Theorems

Triangulation Theorem

Mat 3770 Week 5

Week 5 & Review

Applications

Interval Graph

2.4 Theorems

Fisk's

More Theorems **Theorem 1**. The vertices in a triangulation of a polygon can be 3–colored.

Proof is by induction on n, the number of edges in the polygon.

BC. Let n = 3.

Then the polygon is a triangle, and clearly can be 3-colored.

IH. (Strong induction) Assume any triangulated polygon with $4 \le k < n$ boundary edges can be 3–colored for some arbitrary $n \ge 4$.

IS. Show a triangulated polygon, T, with n boundary edges can be 3–colored.

Week 5 & Review
Applications
Interval Graph
2.4 Theorems
Fisk's

Mat 3770

Week 5

■ Pick some chord edge $e = \langle v_i, v_j \rangle$, which must exist since T has been triangulated.

Since all chord edges connect vertices of the polygon, the chord edge e splits T into two smaller triangulated polygons,

each of which can be 3-colored by the **IH**.

■ In each coloring, v_i will have some color, and v_j will have some other color.

■ Then the two subgraphs can be combined to yield a 3-coloring of the original polygon since, if need be, the coloring of one of the smaller polygons can be modified. Note: this 3-coloring is unique.

Application of the Theorem

Mat 3770 Week 5

Week 5 & Review

Applications

2.4 Theorems

2.4 Theorem

FISK S

More Theorems

- Art Gallery Problem: What are the fewest number of guards needed to watch paintings along the n walls of an art gallery?
- Guards must have direct line-of-sight to every point on the walls.

A guard at a corner is assumed to be able to see the two walls that end at that corner, and the wall directly opposite the corner, if there is one.

Fisk's Corollary

Mat 3770 Week 5

Week 5 & Review

Applications

Interval Gra

2.4 Theorems

Fisk's

More Theorems **Corollary**: the Art Gallery Problem with *n* walls requires at most $\lfloor \frac{n}{3} \rfloor$ guards (where $\lfloor \ \rfloor$ is the floor function.)

Proof: Let the n walls form a polygon P with triangulation T. 3–color T and note each triangle will have a corner of each color. Pick one color, c, and place a guard at each corner colored c (1 in each triangle). Hence the sides (and thus all walls) of every triangle will be watched.

A polygon with n walls has n corners. If there are n corners and 3 colors, some color is used on $\lfloor \frac{n}{3} \rfloor$ or fewer corners.

Other Coloring Theorems

Mat 3770 Week 5

Week 5 8 Review

Applications

2.4 Theorems

More Theorems

Notes:

- If a graph is bipartite, it is 2-colorable (and vice-versa)
- A graph is 2-colorable IFF all circuits have even length (this doesn't require the graph to be connected)
- Let $\chi(G)$ denote the chromatic number of G.

Theorem 2. If the graph G is not an odd circuit or a complete graph, then $\chi(G) \leq d$ where d is the maximum degree of a vertex in G. (This gives a usually poor upper bound on $\chi(G)$)

Week 5 & Review

Applications

Interval Graph

2.4 Theorems

Fisk's

More Theorems **Theorem 3**. For any positive integer k, there exists a triangle–free graph G with $\chi(G) = k$

Rather than color vertices, we can color edges so that all edges incident to the same vertex must have different colors.

Theorem 4 (Vizing's Theorem). If the maximum degree of a vertex in a graph G is d, then the **edge chromatic number** of G is either d or d+1.

Theorem 5. Every planar graph can be 5-colored

Mat 3770 Week 5

Week 5 & Review

Applications

Interval Graph

2.4 Theorems
Fisk's

More Theorems Note: in Tucker, Section 1.4, exercise 16, the reader was asked to prove: Any connected planar graph has a vertex of degree at most 5.

Theorem 5 Proof — by induction on the number of vertices.

- BC. Let $1 \le n \le 5$. Trivially, any such n vertex graph can be 5–colored.
 - IH. Assume for some arbitrary $n \ge 1$, that connected planar graphs with n-1 vertices can be 5-colored.
 - IS. Show a graph with n vertices can be 5-colored.

By the note, G must have a vertex, x, of degree at most 5. Delete x from G to obtain a graph, G', with n-1 vertices. By the IH, G' is 5-colorable.

Week 5 & Review
Applications

Interval Graph

2.4 Theorems

Fisk's

More Theorems Now, reconnect x to the graph and try to properly color x.

If x has degree ≤ 4 , then simply assign a color to x which is different from any of its neighbors. The same coloring works if the degree of x is 5 and 2 or more of its neighbors has the same color.

There remains the case of how to color x if all 5 neighbors have different colors.

Week 5 & Review

Applications

Interval Graph
2.4 Theorems

2.4 Theorems

Fisk's

More Theorems

- Let us label the adjacent vertices A, B, C, D, and E, imposing a clock—wise ordering around X in a planar depiction of G.
- Let the colors 1—5 be assigned to vertices *A*—*E* in order.
- Consider vertex A, colored 1, and vertex C, colored 3.

Week 5 &

Applications
Interval Graph

2.4 Theorems

Fisk's

. .

More Theorems

Case 1.

If there is **no path** between them (other than through A), A may be recolored with color 3, all vertices adjacent to A which are 3 can be assigned 1, and so on.

This re-coloring will not affect C since there is no path from A to C, and furthermore, will only affect vertices reachable from A which are colored 1 or 3.

After the re-coloring, X may be colored 1.

Case 2.

Week 5 & Review

Applications
Interval Graph

2.4 Theorems

Fisk's

More Theorems There exists a path from A to C. This path either encompasses B, or it encompasses D, but not both, since G is planar.

Thus there can be no path between B and D (other than through A), so the same type of re-coloring may be applied to B (color 2), using D's color (4).

Thus allowing X to be colored with 2.

Hence, every planar graph can be 5-colored.

Tucker, Chapter 2 Overview

Mat 3770 Week 5

Week 5 & Review

Applications

Interval Graph

2.4 Theorems

Fisk's

More Theorems edge exactly once. Determine existence with Euler's Theorem.

Section 2.2 Hamilton circuits — circuits that visit every vertex exactly once. Determine existence by a laborious systematic search to try all possible ways of constructing a HC.

■ Section 2.1 Euler cycles — cycles that traverse every

- Section 2.3 Graph coloring & some applications.
- Section 2.4 Graph coloring theory.