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Week 5 — Student Responsibilities

Mat 3770
Week 5

Week 5 &

Review m Reading: Edge Counting, Planarity
(See Syllabus schedule)

m Hwk from Tucker — 2.4
m Hwk from Rosen — 9.8

m Attendance Sprightfully Encouraged
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What is the Chromatic Number of this Graph?




An Example Coloring
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Graph Coloring Applications—VLSI Chip Design
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Week 5
VLSI: Very Large Scale Integrated Chip Design—the “brains”
of a computer
Applications

Gates: logical sub-circuits in a computer chip which are
composed of electronic switches

Possibilities in chip manufacturing:

m Most expensive: Custom fabricated chips
m Medium expense: Semi—custom chips

m Least expensive: “Off—-the—Shelf’ chips



Semi—Custom Design
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Week s Using Pre—fabricated Chips
A m fabricated up to the inter-connection phase
pplications

m reduces overall cost of manufacturing chips

m example: Programmable Logic Arrays (PLA)

m gates are laid out in rows (G, G, ..., G,) with specified
connections between certain pairs, G; and G;, given as
(<i, j>)

m connections are laid out in parallel tracks (columns)
m no connections may overlap, not even at an endpoint

m we want to minimize the number of tracks required



A Programmable Logic Array Example
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feeks Suppose we want the following Gate connections
<1,3> <1,3> <2,3>
Applications < 2, 4‘ > < 2, 5 > < 4, 5 >

The layout below “realizes” these connections using 5 tracks

track
1 2 3 4 5
G, [e o |
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Gz e ¢ |
Gy ) [ |
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Minimizing the Layout
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Week 5 If we have the time and money, we can re-arrange rows and
improve the routing phase. Notice that gates in rows 1 & 3
want to be together, as do gates in rows 2 & 3, and in 4 & 5
Applications track
1.2 3
G, | \, T |
. G, & o o |
We get very good improve- s |
G, o o |
ment: from 5 tracks down to 6. ] ! . |
. 4
ust 3. |
J G5 I o o |

How is this modeled in a program? With a graph. We can use
a force—directed algorithm, which acts like springs attached to
the rows so those with many connections are more attracted
than those with fewer.



Interval Graph
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m Interval Graph: a graph G with a one—to—one
correspondence between its vertices and a collection of
Tetcre] G intervals on the line such that two vertices of G are adjacent
when the corresponding intervals overlap.

m Example applications: competition graph (used in ecology;
species compete for survival), VLSI routing problems (PLA
folding).



Mat 3770
Week 5

m Given the VLSI design problem of connecting the rows of
gates:

Interval Graph

(1, 3) (1, 3) 2, 3)
(2, 4 (2, 5) (4, 5)

we can model the problem of determining the minimum
number of tracks by finding the Chromatic Number of a
related interval graph.
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m Let vertices be the connection pairs, and consider them as
intervals, for example: (1, 3) — [1..3]

Interval Graph

m Let edges join intervals without overlap.

m The minimum number of tracks will be the Chromatic
Number of the graph since intervals can share a track only if
they do not overlap.



Consider: Ks Subgraph
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° m A complete graph, Ks, requires 5 colors (and we cannot color

it in fewer colors).

m Thus, we need at least 5 tracks.
Interval Graph

1,3)

(1,3) (2,3

(2,%) (2,4)

4,9)



Another Example
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eets £ m The largest complete graph in the figure below is a triangle,
therefore it requires 3 colors (and we cannot color it in 2
colors)

interval Graph @1 hus we need only 3 tracks when the rows are rearranged.

(A, B)

(A, B) (B,C)

(C, D) (C,E)

(D, E)



Sec. 2.4—Coloring Theorems

Mat 3770
Week 5

m Polygon: a planar graph consisting of a single circuit with
edges drawn as straight lines.

B4 Theorems. g Triangulation of a Polygon: the process of adding a set of

straight—line chords between pairs of vertices of the polygon
so that all interior regions are bounded by a triangle.

m Note: Chords cannot cross each other nor the sides of the
polygon.



Example of a Triangulated Polygon
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2.4 Theorems




Triangulation Theorem
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Theorem 1. The vertices in a triangulation of a polygon can
be 3—colored.

24 Theorems Proof is by induction on n, the number of edges in the polygon.

BC. Let n = 3.

Then the polygon is a triangle, and clearly can be 3—colored.

IH. (Strong induction) Assume any triangulated polygon with
4 < k < n boundary edges can be 3—colored for some
arbitrary n > 4.



IS. Show a triangulated polygon, T, with n
boundary edges can be 3—colored.

Mat 3770 . . .
Week 5 m Pick some chord edge e = < vj,v; >, which must exist

since T has been triangulated.

m Since all chord edges connect vertices of the polygon, the
chord edge e splits T into two smaller triangulated polygons,
24 Theorems each of which can be 3—colored by the IH.

m In each coloring, v; will have some color, and v; will have
some other color.

m Then the two subgraphs can be combined to yield a
3—coloring of the original polygon since, if need be, the
coloring of one of the smaller polygons can be modified.
Note: this 3—coloring is unique.



Application of the Theorem
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m Art Gallery Problem: What are the fewest number of
guards needed to watch paintings along the n walls of an art
gallery?

2.4 Theorems

m Guards must have direct line—of—sight to every point on the
walls.

m A guard at a corner is assumed to be able to see the two
walls that end at that corner, and the wall directly opposite
the corner, if there is one.
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Fisk's

Fisk's Corollary

Corollary: the Art Gallery Problem with n walls requires at
most | 3| guards (where | | is the floor function.)

Proof: Let the n walls form a polygon P with triangulation
T. 3—color T and note each triangle will have a corner of
each color. Pick one color, ¢, and place a guard at each
corner colored ¢ (1 in each triangle). Hence the sides (and
thus all walls) of every triangle will be watched.

A polygon with n walls has n corners. If there are n corners

and 3 colors, some color is used on | 5| or fewer corners.



Other Coloring Theorems
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Notes:
m If a graph is bipartite, it is 2—colorable (and vice—versa)

m A graph is 2—colorable IFF all circuits have even length (this
doesn't require the graph to be connected)

m Let x(G) denote the chromatic number of G.

More
Theorems

Theorem 2. If the graph G is not an odd circuit or a complete
graph, then x(G) < d where d is the maximum degree of a
vertex in G. (This gives a usually poor upper bound on x(G))
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More
Theorems

Theorem 3. For any positive integer k, there exists a
triangle—free graph G with x(G) = k

Rather than color vertices, we can color edges so that all
edges incident to the same vertex must have different colors.

Theorem 4 (Vizing's Theorem). If the maximum degree of a
vertex in a graph G is d, then the edge chromatic number
of G is either d or d + 1.



Theorem 5. Every planar graph can be 5—colored
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Note: in Tucker, Section 1.4, exercise 16, the reader was asked
to prove: Any connected planar graph has a vertex of
degree at most 5.
Theorem 5 Proof — by induction on the number of vertices.
More BC. Letl1l<n<5.

Theorems

Trivially, any such n vertex graph can be 5—colored.

IH.  Assume for some arbitrary n > 1, that connected planar
graphs with n — 1 vertices can be 5—colored.

IS.  Show a graph with n vertices can be 5—colored.
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More
Theorems

By the note, G must have a vertex, x, of degree at most 5.
Delete x from G to obtain a graph, G’, with n — 1 vertices. By
the IH, G’ is 5—colorable.

Now, reconnect x to the graph and try to properly color x.

If x has degree < 4, then simply assign a color to x which is
different from any of its neighbors. The same coloring works if
the degree of x is 5 and 2 or more of its neighbors has the
same color.

There remains the case of how to color x if all 5 neighbors have
different colors.



Mot 3110 m Let us label the adjacent vertices A, B, C, D, and E,
imposing a clock—wise ordering around X in a planar
depiction of G.

m Let the colors 1—5 be assigned to vertices A—E in order.

m Consider vertex A, colored 1, and vertex C, colored 3.

A-1
More
Theorems
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More
Theorems

Case 1.

If there is no path between them (other than through A), A
may be recolored with color 3, all vertices adjacent to A which
are 3 can be assigned 1, and so on.

This re-coloring will not affect C since there is no path from A
to C, and furthermore, will only affect vertices reachable from
A which are colored 1 or 3.

After the re-coloring, X may be colored 1.
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e Case 2.

There exists a path from A to C. This path either
encompasses B, or it encompasses D, but not both, since G is
planar.

Vi Thus there can be no path between B and D (other than
Theorems through A), so the same type of re-coloring may be applied to
B (color 2), using D's color (4).

Thus allowing X to be colored with 2.

Hence, every planar graph can be 5—colored.
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More
Theorems

Tucker, Chapter 2 Overview

Section 2.1  Euler cycles — cycles that traverse every
edge exactly once. Determine existence with Euler's
Theorem.

Section 2.2 Hamilton circuits — circuits that visit every
vertex exactly once. Determine existence by a laborious
systematic search to try all possible ways of constructing
a HC.

Section 2.3 Graph coloring & some applications.

Section 2.4  Graph coloring theory.
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