Mat 3770 Week 7
Week 7
Trees
Relationships
M-ary Trees
Examples
Balanced
Prufer
Exercises

Week 7 — Student Responsibilities Mat 3770 Week 7 Week 7 Reading: Chapter 2.4, 3.1 (Tucker), 10.1 (Rosen) M-ary Trees Homework Attendance springi-ly Encouraged

Chapter 3. Trees & Searching

Mat 3770 Week 7

Week 7

Trees

Relationships M–ary Trees Examples Balanced Prufer

Exercises

Properties of Trees

Tree₁: a connected, undirected graph with no cycles.

Tree₂: a directed or undirected graph with a designated vertex called root such that there exists a unique path from the root to any other vertex in the graph.

In an undirected graph, any vertex can be root... why is this not true in a digraph?

• root(T): the root of tree T.

Tree

Week 7

Trees

Relationships M–ary Trees Examples Balanced

Prufer

Exercises

Week 7

Trees

Relationships M–ary Trees Examples Balanced Prufer Exercises Rooted tree: a directed tree (i.e., in a digraph); requires a unique root, else would have circuit.

An unrooted tree can easily be made into a rooted tree by selecting the root and directing all edges away from it.

Level number: the length of the unique path (i.e., # of edges) from the root to a particular node.

The level number of the root is zero.

- **Leaf**: a node with no children, also known as an external node.
- Internal node: node which is not a leaf.

Node Relationships

Mat 3770 Week 7

- Week 7
- Trees
- Relationships M-ary Trees Examples Balanced Prufer
- The parent of vertex x is the vertex y with an edge (\vec{y}, x) in the rooted tree T.
 - **Note:** root(T) has no parent.

- The children of a node x are all vertices z such that there exists an edge (\vec{x}, z) in T.
 - Note: Children have level #'s one greater than their parents.

Siblings: two nodes with the same parent.

Extended Node Relationships

Mat 3770 Week 7

Week 7

Trees

Relationships M–ary Trees Examples Balanced Prufer

Exercises

Ancestor (of a node x): all nodes on the path from the root to the parent of x (including the root and parent).

Descendant (of a node x): nodes on paths from x to all leaves reachable from x.

Binary Trees

Mat 3770 Week 7

Week 7 Trees Relationships M-ary Trees

Balanced

Prufer

Exercises

Binary tree: a tree in which all nodes have 0, 1, or 2 children.

In a binary tree, we differentiate **left** child from **right** child.

Full binary tree with 31 nodes, 16 of which are leaves.

Week 7 Trees Relationships **M-ary Trees** Examples Balanced Prufer **Theorem 1**. A tree with *n* vertices has n - 1 edges.

An informal proof: pair each node except the root with its incoming edge. There are n-1 such nodes with 1 edge per node and no extra edges. Thus there are n-1 edges.

Tree traversal: the process of visiting or processing each of the vertices in a rooted tree exactly once in a systematic manner.

Week 7 Trees Relationships M–ary Trees Examples Balanced ■ If each internal vertex of a rooted tree *T* has *m* children, *T* is called an *m*−ary tree.

If m is 2, T is a binary tree.

Theorem 2. Let T be an m-ary tree with n vertices, of which i vertices are internal. Then n = mi + 1.

Proof: Each vertex in T, other than the root, is the child of a unique vertex (its parent). Each of the *i* internal nodes has *m* children, so there are a total of *mi* children. Adding the one non-child vertex, the root, we have n = mi + 1.

Corollary

Mat 3770 Week 7

Week 7 Trees Relationships M-ary Trees Examples Balanced Prufer Let *T* be an *m*-ary tree with *n* vertices consisting of *i* internal vertices and *L* leaves. If we know one of *n*, *i*, or *L*, then the other two parameters are given by the following formulas based on: n = mi + 1 and n = i + L

a) Given
$$i$$
, then $L = (m-1)i + 1$ and,
 $n = mi + 1$

b) Given L, then
$$i = \frac{L-1}{m-1}$$
 and,
 $n = \frac{mL-1}{m-1}$

a) Given *n*, then
$$i = \frac{n-1}{m}$$
 and,
 $L = \frac{(m-1)n+1}{m}$

Example

team 1

. .

Mat 3770 Week 7

- Week 7
- **M**-ary Trees
- Examples

team 2 team 3 team 15

Since the tree is binary, m = 2. So:

$$i = \frac{L-1}{m-1}$$
$$= \frac{15-1}{2-1}$$

Spam

a copy).

Mat 3770 Week 7

Week 7 Trees Relationships M–ary Trees Examples

Suppose a chain e-mail requires the receiver to send it on to five other people (whom we'll assume have not already received

At level 4 in the tree, how many people are sending out emails? How many emails are they sending? What is the total number of emails sent by level 5?

And the Answers Are...

Mat 3770 Week 7		
Veek 7 Trees	Level 0:	1 emailer
elationships	Level 1:	5 emailers
xamples	Level 2:	25 emailers
Balanced Prufer	Level 3:	125 emailers
xercises	Level 4:	emailers
	Level 5:	emailers

Balanced Trees

Mat 3770 Week 7

- Week 7 Trees Relationships M–ary Trees Examples Balanced
- Exorcisos

- The **Height** of a rooted tree is the length of the longest path from the root to a leaf.
- Alternately, the height can be defined as the largest level number of any vertex.
- A rooted tree of height *h* is **balanced** if all leaves are at levels *h* and *h* − 1.
- Balancing a tree minimizes its height.

Week 7

Trees

Relationships

M-ary Trees

Examples

Balanced

Prufer

Exercises

Theorem 3. Let T be an m-ary tree of height h with L leaves. Then:

(a)
$$L \leq m^h$$
, and if all leaves are at height $h, L = m^h$

(b) $h \ge \lceil \log_m L \rceil$, and if the tree is balanced, $h = \lceil \log_m L \rceil$.

	Theorem 3 — Proof — Part (a)		
Mat 3770 Week 7	$L \leq m^h$, and if all leaves are at height h , $L = m^h$		
Week 7	(in a tree of height <i>h</i> with <i>L</i> leaves)		
Trees			
Relationships	Proof by induction on the height <i>h</i> :		
M-ary Trees			
Examples	BC Let $h-1$		
Balanced	An many tree of beight 1 has m larger the children of the		
Prufer	An <i>m</i> -ary tree of height 1 has <i>m</i> leaves, the children of the		
Exercises	root.		
	And $L \leq m^n = m^1 \sqrt{1}$		

IH Assume *m*-ary trees of height k, $1 \le k < h$, have $\le m^k$ leaves (and if all leaves are at height k, $L = m^k$).

Week 7 Trees Relationships M-ary Trees

Examples

Balanced

Prufer

Exercises

IS Show *m*-ary trees of height *h* have $\leq m^h$ leaves.

An *m*-ary tree of height h can be broken into *m* subtrees rooted at the *m* children of the root.

These *m* trees have at most height h - 1.

By the IH, each has at most m^{h-1} leaves (and if all leaves are at height h-1 in these subtrees, then each has exactly m^{h-1} leaves).

The *m* subtrees combined have at most $m \times m^{h-1} = m^h$ leaves (and if all leaves are at height h - 1 then there are exactly m^h leaves) which are exactly the leaves of *T*.

Mat	37	7
We	ek	7

Week 7 Trees

Relationships M–ary Trees Examples Balanced

Prufer

Exercises

$h \ge \lceil \log_m L \rceil$, and if the tree is balanced, $h = \lceil \log_m L \rceil$ (in a tree of height *h* with *L* leaves)

Theorem 3 — Proof — Part (b)

By Part (a):

$$\begin{split} L &\leq m^{h} \\ \log_{m}(L) &\leq \log_{m}(m^{h}) \quad take \log_{m} both \ sides \\ \log_{m} L &\leq h \\ \lceil \log_{m} L \rceil &\leq h \quad since \ h \ is \ an \ integer \end{split}$$

If the tree is balanced, the largest value for L is m^h (if all leaves are at height h). The smallest value for L is $m^{h-1} + 1$, (one leaf at height h, and the rest at height h - 1).

Week 7 Trees Relationships M–ary Trees

Examples

Balanced

Prufer

Exercises

So, using these upper and lower bounds:

$$egin{array}{rcl} m^{h-1}+1&\leq &L&\leq m^h\ m^{h-1}&< &L&\leq m^h\ \log_m(m^{h-1})&<&\log_m(L)&\leq&\log_m(m^h)\ h-1&<&\log_m(L)&\leq&h \end{array}$$

Or, equivalently, $h = \lceil \log_m L \rceil$

Read over examples 3 & 4, pages 97 & 98 in Tucker.

Week 7

Trees

Relationships M–ary Trees Examples

Balanced

Prufer

Exercises

Theorem 4. There are n^{n-2} different undirected trees on n items.

Example The number of different undirected trees on 3 distinct items, say 1...3, where order of sibling leaves is not important, is

The number of different sequences of length n - 2 over the n items is:

$$\underbrace{n * n * n \dots * n}_{n-2 \text{ times}} = n^{n-2}$$

Prufer Sequences

Mat 3770 Week 7

Week 7 Trees Relations

M-ary Trees

Balanced

Prufer

Exercises

We wish to construct a **mapping**, a 1–1 correspondence, between trees on n items and (n - 2)-length sequences of the n items.

For any tree on *n* numbers, we can form a **Prufer Sequence** $(s_1, s_2, \ldots, s_{n-2})$ of length n - 2 as follows:

Repeat until only two vertices remain

- Let L₁ be the leaf in the tree with the smallest number, and let s₁ be the number of the one vertex adjacent to it.
- Delete vertex L_1 from the graph

Prufer Sequence Example Mat 3770 Week 7 Week 7 Relationships M-ary Trees Balanced Prufer Exercises

Prufer Sequences Define Unique Trees

Mat 3770 Week 7

Week 7 Trees

Relationship

M-ary Trees

Example

Balanced

Prufer

Exercises

Next, we must show any such (n - 2)-length sequence of n items defines a unique n-item tree by reversing the above process.

Notes:

- 1. Leaves, vertices of degree 1, will never appear in the sequence.
- 2. The first number in the sequence is the neighbor of the smallest numbered leaf.
- 3. The smallest numbered leaf has the smallest number which doesn't appear in the sequence.

Reversing the Prufer Sequence

Mat 3770 Week 7

Week 7 Trees Relationships M–ary Trees Examples Balanced Prufer

(1, 2, 1, 3, 3, 7) — 12345678

- The number of nodes in the tree: _____
- The smallest number not appearing: _____
- Set this leaf aside as the smallest and consider the first item

 (1) as a node that will be adjacent to some item in the
 remaining list.
- Repeat the process of identifying the smallest leaf in the remaining (n - 1)-item tree specified by the remaining (n - 3)-item sequence.
- For (2, 1, 3, 3, 7), item _____ is the smallest of the remaining numbers not in the sequence, so it is a leaf adjacent to item 2.

Find the Prufer Sequence

From the Sequence Back to the Tree Mat 3770 Week 7 Week 7 Relationships M-ary Trees Balanced Prufer Exercises

Find Prufer Sequences

From the Sequences Back to Trees Mat 3770 Week 7 Week 7 Relationships M-ary Trees Balanced Prufer Exercises