
Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Mat 3770
Week 11

Spring 2014

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Homework

Due date Tucker Rosen

4/7 4.1 9.6, set 1

4/7 Dijkstra–I worksheet

4/9 9.6, set 2

4/9 Dijkstra–II worksheet

4/11 3.4 10.5

4/11 TSP worksheet

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Week 11 — More Student Responsibilities

Reading, Tucker: 4.1, 3.4

Reading, Rosen: 9.6, (653–655)

Attendance Spring-i-ly Encouraged

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Single Source – Shortest Paths

Problem Statement:

Given a direct graph G = (V, E), with edge weights
and a vertex v ∈ V, find the weight of a shortest
path from v to every other vertex in G.

Assumptions:

1. Weights are positive real numbers (w : EG → <+)

2. Path weights = sum of weights of all edges in the path

3. Define SHORT(w) to be the weight of the shortest path from
v to w.

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

An Example

50

50
5

70

20

30

10

10

10
0

20

B

C

E

F

A

D

Graph G

Let v = A

SHORT (A) = 0

SHORT (B) = 35

SHORT (C) = 30

SHORT (D) = 20

SHORT (E) = 10

SHORT (F) = 40

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Idea Behind the Algorithm

Grow a tree of shortest paths
from v to other vertices in VG .

V − SG

G

v

S

Graph G

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Let S ⊆ VG , v ∈ S.
Suppose for each w ∈ S, we know SHORT(w).

50

10

30

100

10

V−SGS
(v)

E

A
C

B

D F

Graph G

For each (w, u) ∈ Eg , where w ∈ S, u ∈ VG - S, look at
SHORT(w) + weight(w,u).

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Claim:

If (w, u) is the edge minimizing

SHORT(w) + weight(w, u)

— over all w ∈ S and u ∈ V - S —

then

SHORT(u) = SHORT(w) + weight(w, u).

In other words, pick vertex from V - S to add to S which has
the least weight path.

Thus, we add u to S and (w, u) to the tree.

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Proof: Consider (w, u)

k−1 kPv v

V − SG

G

v

w
u

S

Graph G

Let P = {v = v1, v2, . . . , vk} be the least weight path from v
to some vertex vk ∈ V - S.

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Observation: {v = v1, v2, . . . , vk−1} are all in S !
(Else there is a shorter path, ending before vk).

Hence
weight(P) = SHORT(vk−1) + weight(vk−1, vk)

≥ SHORT(w) + weight(w, u)

Thus, [the shortest path from v to w] + [edge(w, u)]
gives a path from v to u which is as short as any path from v
to any x ∈ V - S.

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

SHORT(i)

Step S V-S A B C D E F

Init A BCDEF 0 ∞ ∞ ∞ ∞ ∞
1 AE BCDF 0 ∞ ∞ ∞ 10 ∞
2 AED BCF 0 ∞ ∞ 20 10 ∞
3 AEDC BF 0 ∞ 30 20 10 ∞
4 AEDCB F 0 35 30 20 10 ∞
5 AEDCBF 0 35 30 20 10 40

We want to minimize SHORT(w) + weight(w, u).

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Algorithm — First Pass

Dijkstra(G, v) : SHORT[1..n]

// Initializations

S ← v

SHORT[v] ← 0

FOR each w 6= v do

SHORT[w] ← ∞

// Build tree of shortest paths
While |S | < |V | do

Find edge e = (w, u) such that w ∈ S, u ∈ V-S, and
SHORT(w) + weight(w, u) is minimal

SHORT(u) ← SHORT(w) + weight(w, u)

S ← S ∪ {u}

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Implementation Analysis

What are the slow steps — i.e., what will bound our time?

Find edge e = (w, u) such that w ∈ S, u ∈ V-S, and
SHORT(w) + weight(w, u) is minimal

Suppose we had a TABLE, D[1..n], for u 6∈ S, where:

D[u] = minw∈S { SHORT[w] + weight(w, u) }

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Then we could

1. search the list D for best u and add u to S

2. next we would update D, since D[u’] may have changed for
some elements

So, how long to update D?

1. Well, how many elements need changed?

2. At most, outdeg(u) vertices — the neighbors of u

Thus, overall time updating D is:
∑

u∈V outdeg(u) = |E |

and, the algorithm takes time:

O(|V | ∗ |V | + |E |) = O(|V |2 + |E |)

or # iterations × Search D + Update D

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Dijkstra(v) // v is the source node

variables:

D[] — the length of the shortest path from v to each node

P[] — the parent of each node

// Initialize cost to each node from source

// and make source the parent

for all vertices u ∈ V

if (v, u) ∈ E

D[u] = weight(v, u)

else

D[u] = ∞
P[u] = v

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

// Delete source from nodes not considered so far

// and set distance to itself to 0

V’ = V - { v }
D[v] = 0

// Determine shortest distances and parents

for i = 1 to n − 1

Select u ∈ V’ such that D[u] = minx∈V ′ D[x]

V’ = V’ − { u }
for all w ∈ V’

//Do we get shorter path to w through u?

if D[w] > D[u] + weight(u, w)

D[w] = D[u] + weight (u,w)

P[w] = u

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Obtaining Shortest Path Routes, source to sink

Idea: backtrack through parents until source is reached

for all nodes w ∈ V

// print shortest path from w to v

q = w

print q

while q 6= v

q = P[q]

print q

print q

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Can We Do Better?

We always want to find the minimum in D

If we implement D as a min–heap, Searching takes O(1) time

But, how would we then update D?

I.e., when u is added to S, if (u, u’) ∈ E, u’ ∈ V-S, we may
need to change D[u’]

Solution: Add a table, Dindex[1..n] which stores the position
of vertices in heap D

Whenever heap elements are moved, update Dindex[].

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Now, updating D and Dindex takes

outdeg(u) * log |V | steps

So the algorithm takes

O((|V | + |E |) ∗ log |V |) time

Is this better than O(|V |2 + |E |)

Yes, if |E | ∈ O(|V |
2

log |V |)

For example, if G is planar or not “almost complete” (i.e.,
sparse).

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

The Traveling Salesperson Problem

Problem Statement:
Given a graph, find the least–cost circuit which
includes every vertex — i.e., the cheapest Hamilton
Circuit.

Multiple Uses:

1. Business and industry, ex: robotic motion planning for wiring
or laser–drilled holes in circuit boards

2. Efficient routing of telephone calls and Internet connections

3. Archaeologists: help in determining the sequence of deposits

4. Delivery routes

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Several algorithms

1. Brute Force

2. Nearest Neighbor

3. Branch and Bound

4. Approximation Algorithm, Using Minimal Spanning Tree

5. And others. . .

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

TSP: Brute Force

A

B C

D

A C

D

B

B
D

D
B

A
A

D
C D

C
A
A

B
C

C
B

A
A

1. Select a starting point

2. Enumerate all possible Hamilton Circuits with that starting
point

3. Find the total weight of each circuit

4. choose one which produces the minimum cost

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Brute Force Example

1

3

3

61 4

A

B C

D

Total weight
Circuit of the circuit
1. A→ B → C → D → A 3 + 6 + 3 + 1 = 13
2. A→ B → D → C → A 3 + 4 + 3 + 1 = 11
3. A→ C → B → D → A 1 + 6 + 4 + 1 = 12
4. A→ C → D → B → A (opp 2) 11
5. A→ D → B → C → A (opp 3) 12
6. A→ D → C → B → A (opp 1) 13

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Efficiency of Brute Force?

The Brute Force method provides a way to find a minimum
Hamilton circuit if one exists (optimal solution).

Consider a complete, weighted graph with 10 vertices. How
many circuits and total weights would we have to calculate
for this graph? (10!, or 3,628,800 Hamilton circuits, but we’d
only have to calculate the weights for half of them. . .)

So, in worst case, if the graph had n vertices, how long would
this algorithm take to execute? Is that feasible?

If we used the Brute Force algorithm as the basis for a
program for a super–computer, and had fed it a 100–vertex
TSP when the universe was created, it would still be far from
done. . . (100! = 9.3326211544× 10157)

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Approximation Algorithms

Algorithms which do not take too much computer time,

and that give reasonably good solutions

most of the time are called

approximation algorithms.

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Nearest Neighbor Algorithm

Idea: choose as the next vertex, the nearest one to the
current vertex. (Used on complete graphs.)

1. Choose a starting point for the circuit; say vertex A

2. Check all the edges incident to A, and choose one that has
smallest weight; proceed along this edge to the next vertex

3. Repeat

At each vertex you reach, check the edges from
there to vertices not yet visited. Choose one with
smallest weight. Proceed along this edge to the
next vertex.

until all vertices have been reached

4. Return to the starting vertex

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Nearest Neighbor Example

A courier is based at the head office (A), and must deliver documents

to four other offices (B, C, D, and E). The estimated time of travel in

minutes between each of these offices is shown on the graph below.

10

7

5

209
13 9

8 8
3

A

B

C D

E

Use the Nearest Neighbor algorithm to find an approximate solution

to this problem. Calculate the total time required to cover the chosen

route. Begin at A.

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Answer:

Total Weight:

Is this the optimum answer?

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Starting Circuit Using

Vertex Nearest Neighbor Total Weight

A A→ D → E → B → C → A 9 + 5 + 3 + 10 + 13 = 40

B B → E → D → C → A→ B 3 + 5 + 7 + 13 + 9 = 37

C C → D → E → B → A→ C 7 + 5 + 3 + 9 + 13 = 37

D D → E → B → A→ C → D 5 + 3 + 9 + 13 + 7 = 37

E E → B → D → C → A→ E 3 + 8 + 7 + 13 + 20 = 51

Any circuit of minimum weight may be used.

Since these are circuits, may begin at any office.

Have we found a minimum Hamilton Circuit?

Optimality is not guaranteed with Approximation Algorithms.

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

The Branch and Bound Algorithm

A general and usually inefficient method for solving
optimization problems.

Goal

Find the best (i.e., optimal) solution to a problem.
Used for optimization problems and Artificial Intelligence

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Branch and Bound Ideas

Examine all feasible solutions in an orderly manner: the
configurations of solutions (the Search Space) can be
stored or represented in a tree structure.

Search the tree using a depth–first approach: the traversal of
one downward path in the tree produces a (possibly
infeasible) solution.

Eliminate as many of the feasible and infeasible solutions as
possible by pruning branches from the search tree.

The aim is to avoid traversing the entire tree by stopping
searches at nodes (pruning) when it is ascertained an
optimal solution cannot be represented by the current path.

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Branch and Bound Ideas, Continued

We bound our solutions if possible so we can prune some of
the branches.

We may be able to use both upper and lower bounds to aid
in pruning.

Generally, it is hard to claim anything about the running time
of Branch and Bound algorithms.

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Branch and Bound Overview

Keep track of active nodes

Choose the best value from among active nodes to determine
the next node to consider

If the value of an active node is too large to lead to an
optimal solution, or too small to lead to a feasible solution,
prune at that node

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Common Assumptions

Costs are symmetric: it costs the same to get from A to B as
it does to get from B to A.

Costs satisfy the triangle inequality: the cost to get from A
to C is less than or equal to the cost if one detours through
B while traveling from A to C.

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Quick TSP Tour Construction

Pick any node as a starting circuit consisting of one node

While there exists a node not yet in the circuit

Find nodes u and v such that

u is not in the circuit

v is in the circuit

cost(u, v) is minimized

Insert u immediately in front of v in the circuit

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

A

B

C

D
E

7

4
3

5
2

5

3

10

18
15

A B C D E A =

A C D E B A =

Mat 3770
Week 11

Week 11

Shortest
Paths

Proof

Algorithm

Analysis

Use Heap

TSP

Brute Force

Approximation

Neighbors

B & B

Using Branch & Bound

A

B

C

D
E

7

4
3

5
2

5

3

10

18
15

	Week 11
	Shortest Paths
	Proof
	Algorithm
	Analysis
	Use Heap
	TSP
	Brute Force
	Approximation
	Neighbors
	B & B

