
Programming Challenge Bill Slough
The Trip MAT 4370 Sample Solution

Exercise UVa #10137 (The Trip). The problem is described at:

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=

show_problem&problem=1078.

Lessons Learned

• I spent more time thinking than I did actual programming — and this had a nice payoff: my
program was accepted by the judge on the second submission.

• Floating point arithmetic requires great care. Because every penny matters in this
problem, it is much safer to work with integer types.

• A few students asked me for help in finding a counter-example; i.e., could we find a data
set that would show incorrect output for their program. This turned out to be much more
difficult than I expected. Devising good test cases is hard work!

• Programming—in C or any other language—is an exacting and challenging activity. Good
planning and sound algorithms are required. The fact that our programs must correctly
respond to an infinite possibility of inputs is one of the most challenging aspects.

Explanation

As a starting point, let’s consider a few concrete examples. Suppose five students go on a trip with
the following costs, in cents:

20 18 16 4 2

This is the easiest situation, since the average cost is (20 + 18 + 16 + 4 + 2)/5 = 60/5 = 12. (This is
the easiest situation because 60 is evenly divisible by 5 — there are no remaining pennies to worry
about.) To find out how much money must change hands, look at it from the perspective of all
the students who overpaid. In this example, three people overpaid and require reimbursements of
20− 12, 18− 12 and 16− 12, for a total of 8 + 6 + 4 = 18.

For a second example, consider these costs:

20 18 16 5 3

The total cost is now 62, giving an average of 62/5 — a quotient of 12 with remainder 2. To
equalize costs, three students will pay 12 and two students will pay 13. To minimize the amount
of money which changes hands, we will penalize two of students who are already over the average,
asking them to pay an extra penny.

Here’s a slightly different way to think of it. Let everyone pay b62/5c, then distribute the
extra cost (to the over-payers) from a pool of 62 mod 5 = 2 pennies. As in the first example, we
can account for the money that needs to trade hands from the perspective of those who overpaid.
As a first step, ignore the pool of extra costs. The three people who overpaid would expect
reimbursements of 20−12, 18−12, and 16−12. We adjust this by considering the pool of 2 pennies,
asking two of the three to pay one penny more. The total reimbursement is thus 8+6+5−1−1 = 16.
(We will decrease the pool by one penny each time we consider an over-payer; when the pool reaches
0, any remaining over-payers will not be assessed the extra penny cost.)

As a third example, suppose we have these costs:

62 0 0 0 0

In this case, as before, we have an average of 12 with a pool of 2 cents. The amount to redistribute
is thus (62 − 12) − 1 = 49. This example shows that the pool is not necessarily reduced to 0 as a
result of considering all the over-payers.

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1078
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1078

MAT 4370 Programming Challenge: Bill Slough 2

Coding Details

As already mentioned, performing all arithmetic with integer values is the easiest way of maintaining
accuracy to the penny. Although the input values “look like” they should be read as floating point
values, we can consider them to be pairs of integers and use C’s scanf format specifier to read a
pair of integers from each line of the input. In the following snippet of code, all the variables are
of type int.

/∗ Co l l e c t and save the data f o r the curren t t r i p ∗/
for (i = 0 ; i < n ; i++) {

s can f (”%d.%d” , &d , &c) ;
amt [i] = 100∗d + c ;

As an alternative, we could read the inputs as a floating point type, representing dollars and
cents, and then convert to an integer type representing the number of cents. (For example, 1.23
would be converted to 123.) Due to possible errors involved in storing floating point values, we
need to carefully round when the conversion to an integer type is performed:

double amtPaid ; /∗ amount one s tuden t paid ∗/

/∗ Co l l e c t and save the data f o r the curren t t r i p ∗/
for (i = 0 ; i < n ; i++) {

s can f (”%l f ” , &amtPaid) ;
amt [i] = 100∗amtPaid + 0 . 5 ; /∗ number o f cen t s paid by t h i s s tuden t ∗/

The complete program is shown on the following page.

MAT 4370 Programming Challenge: Bill Slough 3

Source Code

1 /∗
2 Name: t r i p . c
3 Purpose : So lu t i on to Programming Cha l l enges ”The Trip” (# 10137)

4 Author : B i l l S lough

5 Date : January 21 , 2012
6 ∗/
7

8 #include <s t d i o . h>
9

10 #define MAXSTUDENTS 1000

11

12 int main () {
13 int d , c ; /∗ d o l l a r s and cents ∗/
14 int n ; /∗ number o f s tuden t s f o r any one t r i p ∗/
15 int i ; /∗ l oop index ∗/
16

17 int amt [MAX STUDENTS] ; /∗ amount each s tudent paid , in cent s ∗/
18 int t o t a l ; /∗ t o t a l amount , in cents , f o r one t r i p ∗/
19

20 int average ; /∗ amount each s tudent shou ld pay fo r t r i p ,

21 not count ing a p o s s i b l e ex t ra cent ∗/
22 int l e f t o v e r ; /∗ number o f cents to d i s t r i b u t e among s tuden t s
23 to make the t o t a l exac t ∗/
24

25 int t oD i s t r i bu t e ; /∗ amount o f money to d i s t r i b u t e to share the co s t s ∗/
26

27 s can f (”%d” , &n) ;
28 while (n != 0) {
29 /∗ Co l l e c t and save the data f o r the current t r i p ∗/
30 for (i = 0 ; i < n ; i++) {
31 s can f (”%d.%d” , &d , &c) ;

32 amt [i] = 100∗d + c ;

33 }
34

35 /∗ Determine the t o t a l amount paid f o r t h i s t r i p ∗/
36 t o t a l = 0 ;
37 for (i = 0 ; i < n ; i++) {
38 t o t a l = t o t a l + amt [i] ;

39 }
40

41 /∗ Determine the average amount ∗/
42 average = t o t a l /n ; /∗ the FLOOR of the t rue average ∗/
43 l e f t o v e r = t o t a l % n ;

44

45 /∗ Examine what each s tudent paid ; determine the t o t a l amount to be repaid . ∗/
46 t oD i s t r i bu t e = 0 ;

47 for (i = 0 ; i < n ; i++) {
48 i f (amt [i] > average) {
49 /∗ t h i s s tudent overpaid and needs reimbursement ∗/
50 t oD i s t r i bu t e = toD i s t r i bu t e + (amt [i] − average) ;
51

52 /∗ To keep reimbursements lower , increase the cos t

53 o f the overpayers by one penny ∗/
54 i f (l e f t o v e r > 0) {
55 t oD i s t r i bu t e = toD i s t r i bu t e − 1 ;
56 l e f t o v e r = l e f t o v e r − 1 ;
57 }
58 }
59 }
60

61 /∗ Announce the minimum amount which needs to be r e d i s t r i b u t e d ∗/
62 p r i n t f (”$%d.%02d\n” , t oD i s t r i bu t e /100 , t oD i s t r i bu t e % 100) ;

63

64 /∗ Get ready fo r the next group . . . ∗/
65 s can f (”%d” , &n) ;

66 }
67

68 return 0 ;

69 }

