Chapter 3

Configuring Oracle for Access

(Updated July 2008)

Please note that the details on your computer may be slightly different, depending the operating system and the version of database you installed on your computer. Thus, read with your discretion.

Oracle is a sophisticated DBMS that manages access to almost any size database that you can imagine. Hundreds, thousands, or even tens of thousands of concurrent users can connect to a single database server, locally or across a computer network. To accomplish these extraordinary tasks efficiently and reliably, Oracle creates and uses numerous software structures. This chapter explains these structures, including:

· Database servers and instances

· Oracle server processes and threads

· Nets, Oracle's networking software for distributed processing environments

3.1 Oracle Database Instances

As you learned in Chapter 1, a database instance is the collection of server-side processes and memory areas that Oracle uses for managing access to a database. Figure 3-1 is a basic illustration that shows you the shape of an Oracle database instance's processes and memory areas.

NOTE
Oracle’s documentation provides more information about the memory structures in an Oracle instance.

[image: image1.jpg]Oracle database instance

Background server threads Memory areas

- N
k¢ Shared global area \

e

=

Database buffer
cache

~ e e o= ==

I
I
!
I
|

N
-

DT T T R e)

o

FIGURE 3-1.

An Oracle database instance

FIGURE 3-1. An Oracle database instance
3.2 Server Startup and Shutdown

Before anyone can work with an Oracle database, someone must start up the database server. This process includes starting a database instance, mounting (associating) the database to the instance, and opening the database. After a server startup, the database is generally available for use with applications.

Conversely, you can make a database unavailable by performing a database server shutdown. A server shutdown is the reverse of a server startup: you close the database, dismount it from the instance, and then shut down the instance. After a server shutdown, users cannot access the database until after you restart the server.

3.2.1 Server Crashes

A server crash is an abnormal server shutdown. For example, an unfortunate operating system operation or problem could unexpectedly kill one or more of a server's background processes. Consequently, the database server might crash. Oracle has built-in features that protect the work of all committed transactions, and automatically performs the necessary recovery from an instance that crashes. See Chapter 11 for more information about Oracle's database protection mechanisms.

3.2.2 Oracle's Parallel Server Option and High Availability

Many sites use Oracle to support mission critical applications. A mission-critical application, by definition, has stringent high-availability requirements. Such sites can tolerate little or no downtime due to a server crash. In such circumstances, Oracle's Parallel Server option can help. In a parallel server configuration, multiple database instances, running on different nodes of a loosely coupled computer, mount and open the same Oracle database in parallel. Users can work with the database through any instance that is mounted to the database. If an isolated system failure causes one of the instances to crash, other servers remain available so that users can continue work uninterrupted. This course does not discuss Oracle's Parallel Server option in any detail, but mentions this option in the context of certain discussions.

3.3 Controlling Server Startup and Shutdown

Now that you have a basic understanding of database availability, the following exercises teach you how to check the status of and control the availability of Oracle on Windows.

EXERCISE 3.1: Checking the Status of Oracle on Windows

On Windows, an Oracle database instance is a service. The default installation of Oracle automatically configures a database instance as a service that starts up when you start Windows. One way to start and stop the database instance on your Windows is to use the Windows Services dialog box. To check the current status of the Oracle service on your computer, complete the following steps.

1. Click the Start button on the Windows.

2. Click Settings.

3. Click Control Panel.

4. Double-click Services to display the Services dialog box. (Depending upon your operating system, it may take a couple more steps before you can see the Services.)

The Services dialog box, shown in Figure 3-2, includes a scrollable list of all the services installed on your computer, as well as their current status (for example, Started), and their Startup configuration (such as Manual, Automatic, or Disabled).

The service that corresponds to the database instance on your machine is the service with the name OracleServicename, where name is the SID you chose for the starter database during the installation process. If you completed the steps in Chapter 2 exactly as given, your OracleServicename should appear to be OracleServiceORACLE. In Figure 3-2 where the italisized part of service name indicates name of Oracle server ID (or SID) is ORACLE1.

If the current status of OracleServicename is Started, then an Oracle instance is available to provide access to the starter database on your computer. However, if the current status of OracleServicename appears as null (as a blank space), an instance is not running and the starter database is not accessible.

[image: image2.png]=lolx|

Ele Action ew

Help

L =2

B2

[Services (Lacal)

Extended

OracleServiceORACLEL

Stop the service
Pause the service
Restart the service

Nae 7 | Cesciption | stotus [it 2]
[—— Hondiostlo. Stated Ao
ST L scuty ugrtProvidr Providess .
Roffice source ngie Savesint .
Ryoracecssenie Sred At
[nea |
RyoraciobShedderORACLEL Dt
yoracorapbitg pame1s0LFis BoUPs. Stated Ao
)0racoraDbi0g. home SHPPecrEncapsidor .
Sy oraceOraDbi09_home1SNFPeeraseragent .
orackorspbiog home sttener e

aPetomance Logs an Aerts Colcts e

o

Standard

FIGURE 3-2. The Windows Services dialog box
EXERCISE 3.2: Manually Starting Oracle

When OracleServicename is not running, you can start up an instance and make the starter database available for access by completing the following steps with the Windows Services dialog box.

1. Select the service OracleServicename.

2. Click the Start button.

After Windows starts the service, the status of OracleServicename should change to Started, which means that an instance is now started and mounted to the starter database, and the database is open for user access.

NOTE
You can also start up an Oracle instance and mount and open the database by using the STARTUP command of SQL*Plus. See your Oracle documentation for more information about this SQL*Plus command, as well as Chapter 11 for several examples of using the STARTUP command.

EXERCISE 3.3: Manually Stopping Oracle

The process of database shutdown is similar to server startup. When OracleServicename is started, you can shut down the instance and make the starter database unavailable by completing the following steps with the Windows Services dialog box.

1. Select the service OracleServicename.

2. Click the Stop button.

NOTE
You can also shut down an Oracle database server using the SHUTDOWN command of SQL*Plus. See your Oracle documentation for more information about this SQL*Plus command, as well as Chapter 11 for several examples of using the SHUTDOWN command.

EXERCISE 3.4: Configuring Oracle for Automatic Startup

You can also configure Windows to automatically start the Oracle database service when Windows starts. To do this, complete the following steps with the Windows Services dialog box.

1. Select the service OracleServicename.

2. Click the Startup button.

3. Select Automatic in the Startup Type options list of the Service dialog box, and then click OK.

When you return to the Services dialog box, the Startup field of the OracleServicename service should now be Automatic. The next time that you restart Windows, the operating system will automatically start the Oracle service so that users can access the starter database.

NOTE
By default, the installer configures OracleServicename for automatic startup with Windows.

3.4 Connecting to Oracle

After an Oracle instance is up and running, you can establish a connection to the server and perform database work. Behind the scenes, the mechanisms of the database instance work to complete your requests and the requests of others. At the same time, the database instance automatically protects the work of all transactions while preserving the integrity of the shared database. The next two exercises show you how to connect to and disconnect from Oracle using SQL*Plus.

EXERCISE 3.5: Connecting to Oracle with SQL*Plus

Once you have the Oracle service started on your Windows workstation or server, you can connect to the instance and access the starter database. To start SQL*Plus and establish a new database session, complete the following steps:

1. Click the Start button on the Windows taskbar.

2. Click Programs.

3. Click Oracle - Oracle - OraDb10g_home.

4. Click Application Development.

5. Click SQL Plus.

After SQL*Plus starts, it automatically presents its Log On dialog box, which you can use to enter a username and password to connect to the starter database, as shown in Figure 3-3. At this point, you can use the following information to establish your first Oracle database session:

· Enter SYSTEM in the User Name field.

· Enter your password for the SYSTEM user in the Password field. (Depending upon the options you selected during the installation of Oracle 10g, it might force you to specify password for various accounts. Therefore, enter the password that you chose during your installation).
· Enter the name of your starter database in the Host String field. If you followed the steps in Chapter 2, you can enter ORACLE (You may leave it empty if you want to connect to the default database.).
[image: image3.png]Fle Edt Search Options Help
—
User Name:
Password:
Host String:
_>l_I
If everything works properly, SQL*Plus will start and display a message similar to B
» the following: >l
Kl |

NNOOE4E@>-£4-A
Sec1 625 e ni Gl [Ba o] G
| & & | B8 compereser...| (32 windows Chapter 3do... | &y Services |[& orade saL*... |

@[mis 1049 am

FIGURE 3-3. SQL*Plus and its Log On dialog box
If everything works properly, SQL*Plus will start and display a message similar to the following:

SQL*Plus: Release 10.1.0.2.0 - Production on Fri Jun 4 10:49:50 2004
Copyright (c) 1982, 2004, Oracle. All rights reserved.

Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 – Production
With the Partitioning, OLAP and Data Mining options

SQL>

The blinking cursor after the "SQL>" in the last line of the display is SQL*Plus's default command prompt. Here, you can interactively type SQL and SQL*Plus commands to perform work. Later on in this chapter, you'll see how to enter some simple SQL commands. The next chapter will provide you with a more thorough introduction to SQL.

EXERCISE 3.6: Disconnecting from Oracle and Exiting SQL* Plus

After you are finished using SQL*Plus, you can disconnect from Oracle and exit SQL*Plus by entering the EXIT command (type EXIT) at the SQL*Plus prompt.

3.5 Oracle Processing Architectures

Now that you know how to get an Oracle instance up and running and connect to the server with SQL*Plus, it is time to learn more about the software architecture of an Oracle database instance and how to investigate it further. These topics are discussed in the following sections.

3.6 Server-Side Background Threads

Every Oracle database instance on Windows executes as a single process that contains multiple lightweight background threads of execution. Each background server thread performs a specialized system function. Figure 3-4 and the following sections explain the most common background threads that you'll find in any Oracle database instance.

NOTE
On operating systems that cannot support the boundary between different threads of execution (for example, Unix), an Oracle instance starts and uses multiple background server processes rather than a single process with multiple threads of execution.

[image: image4.jpg]Data files

N

DBWR LCWR

Transaction log

CKPT
PMON ARCH

SMON

Other server
threads Archived
transaction log

FIGURE 3-4. The background threads of an Oracle database instance

3.6.1 The Database Writer (DBWn)

When you modify some database data (for example, insert, update, or delete a row in a database table), Oracle does not simply modify the data on disk. This type of processing would be extremely inefficient in a large multiuser system because the system would constantly be reading data from and writing data back to the database's data files. Instead, a server thread working on behalf of your session reads one or more data blocks from a data file into the server's memory. Oracle then makes the change that you request in the server's memory. Eventually, the database writer (DBWR) background thread writes modified data blocks from memory back to the database's data files. To consolidate disk accesses, reduce unnecessary overhead, and make Oracle perform optimally, an instance's DBWR writes modified data blocks from memory to disk only in certain situations: when DBWR sits idle for several seconds, when a user thread wants to read a new data block into memory but no free space is available, or when the system performs a checkpoint. The section "The Checkpoint Thread (CKPT)," later in the chapter, explains checkpoints.

NOTE
Every Oracle instance has at least one DBWR thread. Systems that must support high-volume transaction throughput can operate better with two or more DBWR threads (DBWO, DBW1, DBW2, and so on).

3.6.2 The Log Writer (LGWR)

The log writer (LGWR) background thread records information about the changes made by all transactions that commit. Oracle performs transaction logging as follows:

1. As you carry out a transaction, Oracle creates small records called redo entries that contain just enough information necessary to regenerate the changes made by the transaction.

2. Oracle temporarily stores your transaction's redo entries in the server's redo log buffer. The server's redo log buffer is a small memory area that temporarily caches transaction redo entries for all system transactions.

3. When you ask Oracle to commit your transaction, LGWR reads the
corresponding redo entries from the redo log buffer and writes them to the database's transaction log. The database's transaction log or online redo log is a set of files dedicated to logging the redo entries created by all system transactions. Chapter 11 discusses the transaction log and other database protection mechanisms.

NOTE
Oracle does not consider a transaction to be committed until LGWR successfully writes your transaction's redo entries and a commit record to the transaction log.

3.6.3 The Archiver (ARCH)

The archiver (ARCH) background thread automatically backs up the transaction log files after LGWR fills them with redo entries. The sequential set of archived transaction log files that ARCH creates is collectively called the database's archived transaction log or offline redo log. If a database experiences a serious failure (for example, a disk failure), Oracle uses the database backups and the archived transaction log to recover the database and all committed transactions. Chapter 11 explains more about Oracle's protective mechanisms, including database backups and the archived transaction log.

NOTE
Automatic transaction log archiving is an optional feature of Oracle. Therefore, ARCH is present only when you use this feature.

3.6.4 The Checkpoint Thread (CKPT)

Periodically, DBWR performs a checkpoint. During a checkpoint, DBWR writes all modified data blocks in memory back to the database's data files. The purpose of a checkpoint is to establish mileposts of transaction consistency on disk. After performing a checkpoint, the changes made by all committed transactions have been written to the database's data files. Therefore, a checkpoint indicates how much of the transaction log's redo entries Oracle must apply if a server crash occurs and database recovery is necessary. During a checkpoint, the special checkpoint (CKPT) background thread updates the headers in all of the database's data files to indicate the checkpoint.

NOTE
CKPT is always present in an Oracle instance. However, with earlier releases of Oracle, CKPT was an optional server thread whose responsibilities would otherwise be performed by LGWR.

3.6.5 The System Monitor (SMON)

During database processing, an Oracle instance's system monitor (SMON) background thread performs many internal operations, some of which you might never even realize. For example, SMON periodically coalesces the free space in a database for more efficient space allocations. SMON does its work quietly in the background during times of low activity, or when certain operations are required.

3.6.6 The Process Monitor (PMON)

Occasionally, user connections do not end gracefully. For example, a network error might unexpectedly disconnect your database session before you can disconnect from Oracle. An instance's process monitor (PMON) background thread notices when user connections have been broken. PMON cleans up after orphaned connections by rolling back a dead session's transaction and releasing any of the session's resources that might otherwise block other users from performing database work.

3.6.7 The Recoverer (RECO)

Oracle can support distributed database systems and distributed transactions. A distributed database is a collection of individual databases that appears to applications and end users as a single database. A distributed transaction is a transaction that updates the data in multiple databases. To protect the integrity of data throughout a distributed database, Oracle has special transaction-protection mechanisms that ensure a consistent outcome (commit or rollback) of a distributed transaction at all participating sites.
For example, an untimely network failure might interrupt the commit of a distributed transaction. In this case, the outcome of the transaction might be complete at some databases, while being left in doubt at others. To automatically resolve in-doubt distributed transactions, every Oracle instance has a recoverer (RECO) background thread. RECO automatically wakes up to resolve all in-doubt distributed transactions as they happen. RECO resolves the local outcome of an in-doubt distributed transaction so that it matches the outcome of the transaction at other nodes.

NOTE
This book does not discuss Oracle's distributed database features in any detail, because multiple database configurations are necessary to test and perform most distributed database operations.

3.6.8 Job Queue (SNPn) and Advanced Queue Time Managers (QMNn)

Oracle also supports two different job queue facilities. A job is a task or operation that Oracle executes asynchronously at a scheduled time. Database applications can use either Oracle's job queue facility, or its advanced queuing (AQ) facility to create and schedule jobs that carry out work. To run scheduled jobs, Oracle database instances can start one or more job queue (SNPn) background threads. To support jobs scheduled with the advanced queuing facility, an Oracle instance can start one or more advanced queue manager (QMNn) background threads.

EXERCISE 3.7: Checking the Status of Background Threads

After connecting to the starter database using the steps in Exercise 3.5, use SQL*Plus to submit the following SELECT statement to display the background threads currently at work in your Oracle instance.

SELECT name, description
FROM V$BGPROCESS
WHERE paddr <> '00';

NOTE
Don't concentrate on understanding the specifics of the SQL commands used in the practice exercises for this chapter. Instead, focus on the output produced by each command. The next chapter teaches you the basics of SQL.

The results of your query should look something like the following output:

[image: image5]
Notice that the SELECT statement reveals the name and description of all background threads that have a process address (PADDR) not equal to "00." In the preceding results, the instance has the following background threads: PMON, DBWO, LGWR, CKPT, SMON, RECO, and so on.

3.7 Threads That Support User Connections

An Oracle instance creates and uses a separate set of threads (or processes on Unix) to support database user sessions that connect to the server. Oracle can support user connections to an Oracle instance in any type of computing environment. For example, Oracle can support users that connect to an Oracle database server across a network using a PC or network computer. Oracle can also support users that start a host session and connect to an Oracle instance on the same computer. The following sections explain the different processing architectures that Oracle uses to support user connections in different types of computing environments.

3.7.1 Client/Server Process Architectures

A client/server application is another name for a distributed processing application. In a distributed processing application, the tasks performed by the application are "distributed" across two or more distinct processing components. In a client/server application, there are three components—the client, the server, and a network that connects the client and the server. Figure 3-5 illustrates a typical client/server configuration.

The following sections explain each component of a client/server system.

3.7.2 The Client

The client is the front end of the application that you use to perform work. The client is typically in charge of the following types of operations: Presenting a user interface with which you can interact, such as a form for data entry

· Validating data entry, such as checking that you enter a valid date in a
date field

· Requesting information from a database server, such as customer records or sales orders

· Processing information returned from a database server, such as filling a form with data, calculating field totals on a report, or creating graphs and charts
[image: image6.png]Database

FIGURE 3-5. A typical client/server configuration
3.7.3 The Server

The server is the back end of the application. Behind the scenes, a database server works to manage a database among all the users and applications that use it to store and retrieve data. The server is responsible for the following operations:

· Opening a database and making it accessible to applications

· Preventing unauthorized database access by having tight security controls

· Preventing destructive interference among concurrent transactions accessing the same data sets

· Protecting a database with bulletproof database backup and recovery features

· Maintaining data integrity and consistency as many users perform work

3.7.4 The Network

Typically, the client and server components of an application execute on different computers that communicate with each other across a network. In order to converse, the clients and servers in a network must all employ communication software that lets them speak the same lingo. Later in this chapter, you'll learn more about Oracle's Net Manager, the networking software that lets clients and servers communicate in an Oracle client/server network.

3.8 New Oracle Architecture and Grid

The foundation for Oracle's Information Architecture (http://www.oracle.com/technologies/rfid/docs/RFIDJournal_OIA.pdf) is a grid computing infrastructure where many servers and storage systems act as one large 'super-computer' to run your applications. This is achieved through Oracle Database 10g, Oracle Application Server 10g and Oracle Enterprise Manager 10g, which all have new 'grid technology' features. Oracle Database 10g's grid technology is partly based on enhancements to Oracle 9i's Real Application Clusters, and partly through the new automation features that manage storage and carry out routine tuning and administrative tasks. Application Server 10g similarly features technology to virtualise the mid-tier, presenting a group of separate servers as one J2EE application server to run your applications on. Enterprise Manager now comes with 'Grid Control' and 'Grid Repository' for storing and controlling grid resources, and a number of agents for monitoring all servers and applications.

 Grid computing is the coordinated use of a large number of servers and storage acting as one computer. You can watch a demonstration of the capabilities of Grid at http://www.oracle.com/technologies/grid/index.html
3.9 Oracle-Specific Processing Architectures

Now that you have a general understanding of distributed processing, let's take a look at the specific processing architectures that Oracle uses to support client connections.

3.9.1 Dedicated Servers

The simplest architecture that Oracle can use to support client connections is the dedicated server architecture. Figure 3-6 shows dedicated server architecture. In a dedicated server configuration, Oracle starts a dedicated foreground server thread for each client that connects to the instance. A client's foreground server thread performs database work for its client only. For example, when you send an UPDATE statement to Oracle, your foreground server thread checks server memory for the necessary data blocks; if they are not already in memory, your server thread reads the blocks from disk into server memory; finally, your server thread updates the data blocks in server memory.

[image: image7.png]Dedicated
servers

Database
instance

{ob
=

—
/

Database

FIGURE 3-6. Dedicated server architecture
The dedicated server configuration is not particularly efficient for large user populations. That's because each dedicated server thread performs work for only one user session. If a dedicated server thread sits idle a large percentage of the time (for example, as a salesperson talks to a customer and fills out a form), the inactive server thread unnecessarily consumes server resources. Multiply this by hundreds or thousands of users, and the threads necessary to support user connections quickly deplete a server's resources. Considering these drawbacks, dedicated server connections are typically used only for intensive batch operations that keep the server thread busy a large percentage of the time. Dedicated server connections are also required to execute certain administrative tasks (for example, server startup, shutdown, and database recovery). Instead, most client/server configurations use a Shared Server configuration.

NOTE
When you read your Oracle documentation or other books about Oracle, you might also see the terms two-task client and shadow process. These terms are synonyms for the terms dedicated server architecture and foreground server thread (or process), respectively.

3.9.2 Shared Server Architecture

The typical process architecture that Oracle uses to support client connections is the shared server architecture architecture. Figure 3-7 illustrates a Shared Server configuration.

A Shared Server configuration is a small collection of server side threads that, together, can efficiently support large user populations. The components in a Shared Server configuration include dispatchers, shared servers, and queues.

· A dispatcher thread receives client requests and places them in the server's request queue. A dispatcher also returns the results for requests back to the appropriate client. An Oracle database instance must start at least one dispatcher for every network protocol that it plans to support (for example, TCP/IP, 1PX/SPX, decent).

· A shared server thread executes the requests that it finds in the server's request queue and returns corresponding results to the server's response queue. An Oracle instance can start one or more shared servers. After instance startup, Oracle automatically adjusts the number of shared servers as the transaction load on the system fluctuates. When there are many requests waiting for execution in the request queue, Oracle starts additional shared servers to handle the load. Conversely, when the requests in the queue are cleared, Oracle can stop unnecessary shared servers to reduce the overhead on the host computer.

A Shared Server configuration is very efficient for typical application environments because a small number of shared servers perform the work for many connected clients. Consequently, very little overhead is necessary in order to support large user populations, and the host computer running Oracle can perform better.

[image: image8.png]Shared

Dispatchers Servers Database

- \ f—
.

-

User
Requests I
CF—
LISTENER

Shared Server Configuration

FIGURE 3-7. Shared Server architecture
NOTE
Shared server connections are not possible unless you specifically configure an instance with the necessary threads (a dispatcher and one shared server). Subsequent sections of this chapter explain how to configure Shared Server for an instance.

3.10 Configuring an Instance for Shared Server Connections

Now that you have a good understanding of Oracle's processing architectures, the following hands-on exercises teach you how to perform the following related tasks:

· Check your current type of connection

· Configure your database instance for shared server connections

· Test that an shared server configuration is working properly

· View and edit your server's initialization parameter file (INIT.ORA)

EXERCISE 3.8: Checking Your Current Type of Connection

Now that you understand the different types of user connections that are possible, let's investigate what type of connection you are currently using. After you connect to Oracle using SQL*Plus with the steps in Exercise 3.5, enter the following query to list the type of connection you currently have to the starter database.

SELECT server
FROM v$session
WHERE audsid = USERENV('SESSIONID');

Unless you have done some prior configuration work with your starter database, the output of your query should be as follows:

SERVER

DEDICATED

The example output for this query indicates that the current connection to Oracle uses a dedicated server configuration. A dedicated server connection is the default type of client/server (two-task) connection if you install Oracle for Windows using the typical installation option. The next section shows how to configure an instance so that shared server connections are the default type of client/server connection.

EXERCISE 3.9: Configuring Your Instance for Shared Server

In shared server architecture, the listener assigns each new client session to one of the dispatchers. As the user makes requests, the dispatcher sends the request to the shared server. It is also possible that a different set of shared servers are utilized for a given user session. The dispatchers act as the coordinating agents between the user sessions and the shared servers. A dispatcher is capable of supporting multiple client connections concurrently. Each client connection is bound to a virtual circuit. A virtual circuit is a piece of shared memory used by the dispatcher for the client connection requests and replies. An idle shared server process picks up the virtual circuit from the common queue, services the request, and relinquishes the virtual circuit before attempting to retrieve another virtual circuit from the common queue. In this way, a small number of server processes are able to service a large number of clients or users. This method also supports an increased number of users with less system resources.

As seen in Figure 3.8 the listener communicates with the dispatchers on behalf of the user or client sessions. Once the user sessions establish connectivity with dispatchers, the shared servers service them.

To support shared server connections, you need to make some configuration changes to your instance. For this exercise, you will use the Database Configuration Assistant, a graphical user interface that makes this job easy. To start the Database Configuration Assistant, complete the following steps:

1. Establish a Windows session using an account that is a member of the Administrators group.

2. Click the Start button on the Windows taskbar.

3. Click Programs.

4. Click Oracle – Ora10gHome.

5. Click Configuration and Migration Tools.

6. Click Database Configuration Assistant.

The Database Configuration Assistant is essentially a wizard that makes it easy to complete certain database configuration tasks. In this case, use the following steps to configure an instance to accept SHARED SERVER connections:

1. On the first page, click Modify Database, and then click Next.

2. Select Configure Database Options, Click Next

3. Select ORACLE from the list of options (In this case, it should be only one option if you are continuing with a fresh installation)
4. Enter password for SYS user.

5. It will show you Database Components (You cannot check/uncheck any of these at this point), Click Next

6. You will have two options to proceed i.e., Dedicated Server Mode, Shared Server Mode

7. You can select Dedicated Server Mode which requires a dedicated server process for each user process. There is one server process for each client. Oracle Net sends the address of an existing server process back to the client. The client then re-sends its connect request to the server address provided. Contrast with Shared Server. Select Dedicated Server Mode when: You are using your database in a Data Warehousing environment The number of total client connections is expected to be small Database clients will be making persistent, long-running requests to the database
8. If you select Shared Server Mode, Oracle Database will work in a shared server mode (also known as multi-threaded server mode). It is configured to allow many user processes to share very few server processes, so the number of users that can be supported is increased. Without Shared Server, each user process requires its own dedicated server process. With the Shared Server configuration, many user processes connect to a dispatcher. The dispatcher directs multiple incoming network session requests to a common queue. An idle shared server process from a shared pool of server processes picks up a request from the queue. This means a small pool of server processes can server a large amount of clients.
After you complete the preceding steps, the Database Configuration Assistant makes the necessary changes to your database's initialization file and then closes itself.

[image: image9.png]Database Configuration Assistant : Welcome: — ol x|

Welcome to Database Configuration Assistant for Oracle database.

The Database Configuration Assistant enables you to creats a database, configure database
aptions in an existing database, delete a database, and manage database templates.

cancel Help Bask

FIGURE 3-8. The Database Configuration Assistant lets you configure an instance for shared server connections
EXERCISE 3.10: Testing Your New Configuration

You will not see the effects of your configuration changes in Exercise 3.9 until you restart your server and reconnect to the starter database. To see the results of your labor, complete the following steps:

1. If you currently have an open SQL*Plus session, disconnect from Oracle and exit SQL*Plus by completing the steps in Exercise 3.6.
2. Shut down the current database instance by completing the steps in Exercise 3.3.
3. Start up a new instance by completing the steps in Exercise 3.2.
4. Start a new SQL*Plus session using the steps in Exercise 3.5.
5. List the type of connection that you currently have to the starter database by completing the steps in Exercise 3.8. The results from the query should appear as follows:

SELECT server
FROM v$session
WHERE audsid = USERENV('SESSIONID');

SERVER

SHARED

 If your server is listed as SHARED, you've successfully configured your instance so that client/server (two-task) connections automatically use the instance's shared server architecture.
Prior to the release of Oracle Database 10g, you needed to set up at least one dispatcher for the shared server configuration to be enabled. You normally needed to set the dispatchers initialization parameter to configure the information about dispatchers.

With Oracle Database 10g, even without specifying a dispatcher with the dispatchers parameter, you can enable shared server by setting shared servers to a nonzero value. The default behavior is that Oracle creates one dispatcher for the TCP protocol automatically. This way, it is easier to configure a shared server environment. The equivalent dispatchers initialization parameter for this configuration would be:

DISPATCHERS="(PROTOCOL=tcp)"

When you need to use shared servers while the system is running, you can simply set the dynamic shared_servers initialization parameter to a value greater than zero with an ALTER SYSTEM command.

As with other parameters, you can change just the current instance with this command and, if you are using an SPFILE, you can change the parameter for future instances as well. For example, to activate three shared servers in the current instance and the SPFILE, enter this command:

SQL> ALTER SYSTEM SET SHARED_SERVERS=3 SCOPE=BOTH;

Response should be as follows:

System altered.

There are several other parameters that can be set in the shared server environment, but they are not required. Once you set shared_servers, your system will be running in shared server mode.

NOTE:
When you need to configure another protocol other than TCP/IP, configure a protocol address with one of the following attributes: ADDRESS, DESCRIPTION, or PROTOCOL.

Parameters with the prefix MTS are now obsolete in Oracle10g. This means if you try to start an instance using these parameters you will receive the following error: 'ORA-25138: [parameter] initialization parameter has been made obsolete'

Even if you try to set mts_servers during the runtime of an instance:

SQL> ALTER SYSTEM SET MTS_SERVERS = 2;

ALTER SYSTEM SET MTS_SERVERS = 2

*

ERROR at line 1:

ORA-25138: MTS_SERVERS initialization parameter has been made obsolete

All the replacement parameters listed in the table are dynamic, meaning that you can change the values while the instance is running. Table 3-1 below shows the replaced parameters.

	OBSOLETE PARAMETER in Earlier Versions
	REPLACED BY PARAMETER in Oracle10g

	mts_servers
	shared_servers

	mts_max_servers
	max_shared_servers

	mts_dispatchers
	dispatchers

	mts_max-dispatchers
	max_dispatchers

	mts_circuits
	circuits

	mts_sessions
	shared_server_sessions

	mts_listener_address
mts_multiple_listeners
	local_listener

TABLE 3-9 Oracle 10g Replacement Parameters
In the case of the dispatchers parameter, the results of the change will depend on which attributes you modify. Since several of the attributes affect the network session layer when a dispatcher is started, they cannot be changed for dispatchers already started. These attributes are: protocol, address, description, presentation, connections, sessions, ticks, and multiplex.

You can dynamically modify the other attributes (listener and service) and affect existing as well as new dispatchers of the same configuration.

There is a new view, v$dispatcher_config, that shows more information about existing dispatchers. This view displays information about the dispatcher configurations, including attributes that were not specified and were given a default value. The column CONF_INDX in v$dispatcher_config can be joined to the conf_indx column in v$dispatcher to see all of the detailed information about a given dispatcher. This information helps you to make more informed decisions on what attributes to modify and helps determine if you need to add or remove dispatchers. For example, to get service and other details about dispatchers, use the following query:

SQL> select name, dispatchers, substr(service,1,20) service, idle, busy

from v$dispatcher,v$dispatcher_config

where v$dispatcher.conf_indx =

 v$dispatcher_config.conf_indx ;

NAME DISPATCHERS SERVICE IDLE BUSY

---- ----------- ------------- ---------- --------

D000 1 ORACLE1XDB 1641097 4
===

3.11 Oracle Networking and Net Manager

Computer applications typically operate using a client/server system that incorporates a network of computers. To transmit data between the clients and servers in your Oracle environment, you must use Oracle's network communication software. Net Manager, known as SQL*Net or Net8 in previous versions of Oracle, is networking software that makes it possible for Oracle clients and servers to communicate across a network. Executing on both the clients and servers of the system, Net Manager makes the presence of the network in a client/server system transparent—an application developer does not have to code low-level application logic (for example, network protocol calls) to access Oracle data across a network. Instead, a client application uses standard SQL statements to request data from a remote Oracle server as if the database were on the same machine as the client. The following sections explain the fundamental concepts of Net Manager.

3.12 Basic Net Manager Architecture

The Net Manager software that executes on both clients and servers in an Oracle network includes several different layers of functionality that work to hide the complexities of network communication in a distributed processing application. On the client side, Net Manager permits an application to locate and access a remote database using SQL as if the database resided on the same computer. On the server side, Net Manager permits the database server to receive and send data in response to client SQL requests as though the client were running on the same machine as the server.
The Transparent Network Substrate (TNS) layer of Net Manager is software that provides Oracle clients and servers with a common application programming interface (API) to all industry-standard network protocols. By plugging network protocol adapters into TNS, clients and servers can communicate using any network protocol. Net Manager supports all common network protocols, including TCP/IP, IPX/SPX, DecNet, LU6.2, and more.

[image: image10.png]Oracle
Connection
Manager

ﬁ y

Oracle
Connection Manager Server

D Machine

FIGURE 3-9A. Net Manager hides the network between the clients and servers of an application
[image: image11.png]Orach
Nat

Cliant

Cient
Appleation
(Bsae

Prasaniaton -
e

Orack Nat
R
oyt

| +{Maming wernoss

s [Secutty Sanves

Orcle Procel
Support

Natwork Proocal
TCPIP, TCPAP
wih SSL and
Named Pioss

Datsbase Sarvar

RDEMS
fusss 0P

Prosaniaton -
T

—

Orack Nat
R
Cayer

Oracle Proocal
Support

Natwork Protocal
TCRIP, TCPAP
wih SSL and
Named Pipss

Oracle
Nat

FIGURE 3-9B. Net Manager Architecture
Figure 3-9A and 3-9B illustrates a network communication via Net Manager between a client application and an Oracle database server.

3.13 TNS Connections

A TNS connection is a communication pathway between two nodes in an Oracle network. A TNS connection is a persistent pathway that transmits data between two TNS components. In every TNS connection, one node is the initiator and the other is the destination. Typically, the initiator of a TNS connection is a client application, and the destination is an Oracle database server. However, servers can also communicate with one another in an Oracle distributed database system using TNS connections. This book does not discuss distributed database systems in any detail.

3.13.1 Connection Pooling

Typical database connections support applications that sit idle a large percentage of the time. For example, when using a typical order-entry application, the salesperson does not actually send or receive any database information across the TNS connection while filling out a screen form with order information. To limit the number of physical network connections and make more efficient use of network resources, Net Manager can pool a preset number of TNS connections. With connection pooling, a database session that sits idle can temporarily allow another session to use its physical TNS connection to the database server, and later reclaim its connection when the session needs to communicate with the server. Consequently, connection pooling allows many sessions to communicate with a database server by sharing a predetermined number of available TNS connections. Fewer network resources are needed to support typical applications, and less server overhead typically translates to better server performance. Figure 3-10 illustrates the basics of connection pooling. The server does not begin pooling TNS connections until after the preset number of physical network connections are open. To open a subsequent TNS connection, the database server must first locate an idle session and then logically reassign the idle session's connection to the new connection. The preset limit of physical network connections is a limit that you can set as a configuration parameter before server startup.

3.13.2 Multiplexing

To further reduce the overhead of systems that must support many network connections, Net Manager can multiplex many network connections into a single physical network transport. Figure 3-11 illustrates Net Manager multiplexing.
[image: image12.jpg]Clients
@ TNS connections

Database server

&

Idle

FIGURE 3-10. Connection pooling allows database sessions to use a set number
of physical TNS connections and reduce network overhead

Clients

Database server

E\E? TNS connections
\ Host OS

ey

N
@/

Network transport

FIGURE 3-10. Connection pooling allows database sessions to use a set number of physical TNS connections and reduce network overhead

[image: image13.jpg]Clients
@ TNS connections

Database server

&

Idle

FIGURE 3-10. Connection pooling allows database sessions to use a set number
of physical TNS connections and reduce network overhead

Clients

Database server

E\E? TNS connections
\ Host OS

ey

N
@/

Network transport

FIGURE 3-11. Multiplexing many network connections into a single physical network transport reduces the operating system overhead
The objective of multiplexing is to reduce the operating system overhead (on the host computer} that is necessary to support many network connections. By concentrating many network connections into a single network transport, you reduce the number of processes and open network sockets needed on the server computer to support large user populations.

3.14 The TNS Listener

A TNS listener is necessary to establish TNS network connections. A TNS listener is a process that receives the connection request of an initiator, resolves the given address to the network address of the destination, and establishes a TNS connection to the destination. For example, when you start an application and request a connection to the database named ORACLE, your connection request is forwarded to the network's TNS listener, which then resolves the address of ORACLE to the computer that is running an instance for the associated database. The TNS listener then requests the instance to establish a TNS connection between your client application and the instance's Shared Server server configuration (or a dedicated server).

3.15 TNS Addressing

All computer networks use an addressing scheme that uniquely identifies the location of each computer and service on the network. Network configuration files typically establish network names that users can use to identify specific services on the network. For example, on a TCP/IP computer, there is typically a small file called Hosts that identifies the IP addresses of computers that are accessible on the network. On Windows, the Hosts file is usually found in the C:\WINDOWS\system32\drivers\etc folder, and looks similar to the following:

Copyright (c) 1993-1995 Microsoft Corp.

This is a sample HOSTS file used by Microsoft TCP/IP for Windows.

This file contains the mappings of IP addresses to host names. Each
entry should be kept on an individual line. The IP address should
be placed in the first column followed by the corresponding host
name. The IP address and the host name should be separated by at
least one space.

Additionally, comments (such as these) may be inserted on individual
lines or following the machine name denoted by a '#' symbol.

For example:

102.54.94.97 rhino.acme.com # source server
38.25.63.10 x.acme.com # x client host
127.0.0.1 localhost
12 8.126.50.100 alitestl.animatedlearning.com alitestl

3.15.1 TNS Configuration Files

Oracle TNS networks also require address mappings that describe where TNS services can be found on the network, such as TNS listeners and Oracle database servers. One way to accomplish TNS addressing is to create and distribute TNS configuration files to each client and server in the network. Then, when a client initiates a TNS connection, it can use the local copy of the appropriate configuration file to resolve the TNS service address.

When your network uses configuration files to set up a TNS network, the most common TNS configuration files that you will have are as follows:

	Filename
	Description

	tnsnames.ora
	The tnsnames.ora configuration file resides on both clients and servers in an Oracle network. tnsnames.ora contains address
 information that Net Manager running on a client or server uses to establish connections with other Oracle services in a network.

	sqlnet.ora
	The sqlnet.ora configuration file resides on both clients and serves in an Oracle network. sql.ora contains special configuration parameters that configure a connection from a client or server to
another Oracle service ina network.

	listener.ora
	The listner.ora configuration file resides only on servers that run a TNS listener process. listener.ora configures one or more TNS listener processes. The file describes the names, addresses and databases that correspond to one or more listener process.

 When using Oracle for Windows, the default directory location for all TNS configuration files is

drive::\Oracle\Ora81\Network\Admin

where drive is the disk drive designation that you chose for your Oracle installation.

3.15.2 Oracle Names

Configuring and maintaining large Oracle networks can be a challenging administrative task. When you use TNS configuration files for network addressing, each client and server must have the most recent copy of the configuration files or else applications might not work properly. Distributing files to the nodes in the system can be particularly difficult when the network contains hundreds or thousands of clients that need access to network services. Putting configuration files in a shared, central network location does not work well, because the files become hot spots that can create bottlenecks.

To solve many network management problems in an Oracle network, you can employ an optional TNS service component called Oracle Names. Oracle Names is nameserver_software that an Oracle client/server system can use to centrally manage network names and corresponding addresses. Rather than use configuration files, a client contacts an Oracle Names server to resolve the address to a network service in the Oracle network. The Oracle Names server replies with the network address of the requested service, which the client then uses to establish a connection with the service. You can start redundant Oracle Names servers in the same network to distribute loads and prevent single points of failure from making the network unavailable. And, if the network changes in some way, all that's necessary is a quick change to the names servers in the system, and all clients will see new address information automatically.

3.16 Configuring Net Manager

Net Manager configuration is accomplished using the Net Manager Assistant and the Net Manager Configuration Assistant, two simple utilities that make it easy to create and maintain Oracle networks. Fortunately, the Oracle installer automatically installs and configures Net Manager, including a TNS listener service and the necessary TNS configuration files that facilitate access to the starter database. The following exercises show you how to use the Net Manager Assistant to investigate the configuration of your system.

EXERCISE 3.12: Starting the Net Manager Assistant

In this exercise, you'll learn how to examine your current Net Manager configuration using the Net Manager Assistant. To start the Net Manager Assistant, complete the following steps:

1. Establish a Windows session using an account that is a member of the Administrators group.

2. Click the Start button on the Windows taskbar.

3. Click Programs.

4. Click Oracle -Oracle - OraDb10g_home.

5. Click Configuration and Migration Tools.

6. Click Net Manager.

Figure 3-12 shows the Net Manager. The Net Manager is a dual-paned window that you can use to display the properties of the components in your network. The left pane is an expandable tree of folders. When you select a specific component, the right pane of the Net Manager window shows a property sheet with one or more pages.

[image: image14.png]¥ Oracle Net Manager - E:\oracle10g\NETWORK\ADMINY,

Status

Eile Edit Command Help

Welcome to the Oracle Net Manager The Oracle Net Manager allows
youto configure the following aspects of the network:

Narning - Allows you to define simple names to identify e location of a
senice, such as a database. These simple names map to connect
descriptors, which contain the network location and identification ofthe
senice.

Narning Methods - Configure the different ways in which simple names
are resolved into cannect descriptors.

Listeners - Creats and configure listeners to receive client connections

FIGURE 3-12. The Net Manager
The four components that you can configure in an Oracle network using the Net Manager Assistant are the following:

· Profiles

· Network service names

· TNS listeners

· Oracle Names servers

The following exercises will teach you more about these components.

EXERCISE 3.13: Exploring a Profile

In the context of Nets, a profile is a set of preferences that you can use to configure how clients and servers use Net Manager. The Net Manager Assistant stores the preferences that you set for a profile in the sqlnet.ora configuration file.

To display the properties of the current profile, click the Profile icon in the network tree of Net Manager Assistant. Figure 3-13 shows the Naming properties of the current profile, specifically the methods that Net Manager uses to resolve connection requests to network services.

[image: image15.png]-acle Net Manager

%2 Oracle Net Configuration

@ Local

Servoe Naring
S extoroc_comection_eta
Soracten
Lsteners

Lpustener

Methods | Extemal
Available Methods:

Selected Methos:

HOSTNAME
LDaP

cos

NiS

TNSNAMES
EZCONNECT

o
e
oo

Default Damain:

FIGURE 3-13. Use Net Manager Assistant to display and edit the properties of a profile
Feel free to examine the other properties of your default Net Manager profile and use the tool's Help system to learn more about various preferences that you can enable and configure.

EXERCISE 3.14: Examining Existing Network Services

To display the names and properties of network services currently in your network, open the Net Service Names folder in the Net Manager Assistant, and then click a specific service name. You will see the properties of the ORACLE database service that was automatically configured by the installer for the starter database, in this example, notice that the service's network protocol is TCP/IP, the name of the host server computer might be a server name or an IP address, the port number is 1521, and the service name is might vary on individual servers. You can also click “Show Advanced” button to see advanced protocol parameter settings.
When you add or delete a network service, or modify an existing network service using the Net Manager Assistant, the tool saves your changes in the tnsnames.ora configuration file.

TIP
Before you make any changes to your network services, you might want to create a backup of the existing tnsnames.ora configuration file—the Net Manager Assistant does not ask you to confirm changes before overwriting the existing tnsnames.ora file.

EXERCISE 3.15: Displaying the Listener's Properties

To display the properties of the network addresses for your network's TNS listener, open the Listeners folder in the Nets Assistant, and then click on a specific listener.

Figure 3-14 shows the properties of an address of the default listener named LISTENER that was automatically configured by the installer. In this example, notice that the address is specifically for Net Manager Clients that want to establish TCP/IP connections. When you add or delete an address for a listener, or modify an existing listener address using the Net Assistant, the tool saves your changes in the listener.ora configuration file.

EXERCISE 3.16: Starting and Stopping the Listener

The Oracle installer automatically configures the default listener for your Oracle system as a Windows service. You can check the status of the TNS listener by double clicking Listeners directory root inside Local in the Oracle Net Manager. Figure 3-14 demonstrate how Listeners can be seen.
[image: image16.png]-acle Net Manager

%2 Oracle Net Configuration
G-y Local
Profie
Senice Naming
exoroc_connection_data
Roraclet

Listeners

Le

Listening Locations.

Addresst | Address2

Netwark Address.

Pratocal: [Topip

Host

Port

Oraclet eiu.edu

1521

Show Advanced

I Statically dedicate this address for JServer connections
(for backward compativilitywith Oracle JServer release

815

Add Address | Remove Address

FIGURE 3-14. The properties of a TNS listener address

The installer configures the listener to automatically start when Windows starts. You can adjust this configuration option, as well as start and stop the listener on demand by using steps similar to those in Exercises 3.2 and 3.3—however, select the listener service rather than the database service.

NOTE
You can also control the listener using a command line utility called the Listener Control utility (lsnrctl.exe), which is found in the Bin directory of your Oracle home location. This utility displays a simple command prompt that accepts commands such as START, STOP, and STATUS to start, stop, and check the current status of a TNS listener. To display a list of Help topics after starting the Listener Control utility, enter the HELP command.

This concludes your preliminary investigation of the default Net Manager configuration for your starter database. Should you ever need to update the Net Manager configuration for your system, you can use the Net Manager Assistant. To complete this exercise, exit the Net Manager Assistant without saving any changes.

Chapter Summary

This chapter has explained several of the software components that you will configure and work with when you use Oracle.

· An Oracle instance is a set of operating system threads (or processes) and memory structures that, once started, provide for application access to a database.

· Oracle uses a number of background server threads (for example, DBWR, LGWR, ARCH, CKPT, SMON, and PMON) to perform specialized internal functions.

· Oracle can use either Dedicated or Shared Server configurations to support user connections to a database instance.

· When an Oracle database server must support user connections across a network, clients and servers in the system must run Net Manager, Oracle's networking software.

· To configure Net Manager, you can use the graphical administration tools Net Manager Assistant and Net Configuration Assistant.

NAME DESCRIPTION

----- --

PMON process cleanup

PSP0 process spawner 0

MMAN Memory Manager

DBW0 db writer process 0

LGWR Redo etc.

CKPT checkpoint

SMON System Monitor Process

RECO distributed recovery

CJQ0 Job Queue Coordinator

QMNC AQ Coordinator

MMON Manageability Monitor Process

MMNL Manageability Monitor Process 2

12 rows selected.

Net Manager

