1. The mass of a planet is 4.8×10^{25} kg and its radius is 1.20×10^7 m. What is the acceleration due to gravity at a distance of 2.40×10^7 m from the center of the planet?

2. A cannon shell is fired from the surface of the earth with a speed of 5000 m/s at an angle of 30 degrees with respect to the earth's surface. How far above the surface of the earth is the shell when its speed is 1000 m/s?
3. A 0.200kg mass attached to a spring of force constant 8.00 N/m vibrates with simple harmonic motion. When the stretch in the spring is 10.0cm, the speed of the mass is 50.0cm/s.

(a.) What is the angular frequency of vibration?

(b.) What is the amplitude of the vibration?

(c.) How long does it take the mass to move from x=0 to x=8 cm?
4. A piece of aluminum is suspended from a string and then completely immersed in a container of water. The mass of the aluminum is 1.50 kg, and its density is 2.70×10^3 kg/m3. Calculate the tension in the string after the aluminum is immersed.
A fluid whose density is 1.20 gm/cm³, fills a cylindrical chamber whose cross-sectional area is 100.cm². A tight-fitting, but smoothly moving piston whose weight is 4.00×10^3 N encloses the upper end of the cylinder. As fluid is pushed out of the tube, the piston falls, maintaining contact with the fluid in the chamber. An atmospheric pressure of 1.01×10^5 N/m² surrounds the chamber and tube.

(a.) Determine the pressure in the fluid at point A which is just below the piston.

(b.) What is the ratio of the fluid speed at B to the fluid speed at A?

(c.) Determine the speed of the fluid as it leaves the tube at B.
EQUATION SHEET for EXAM #4

\[x = A \cos(\omega t + \delta) \]

\[T = \frac{1}{f} \]

\[T = \frac{2\pi}{\omega} \]

\[\omega = 2\pi f \]

\[T = 2\pi \sqrt{\frac{1}{mgd}} \]

\[T = 2\pi \sqrt{\frac{L}{g}} \]

\[V = \frac{dx}{dt} \quad a = \frac{dv}{dt} \]

\[U = \frac{1}{2}kx^2 \]

\[K = \frac{1}{2}mv^2 \]

\[\omega = \sqrt{\frac{k}{m}} \]

\[E = \frac{1}{2}kA^2 \]

\[F = G\frac{m_1m_2}{R^2_{12}} \]

\[G = 6.672 \times 10^{-11} \text{Nm}^2\text{kg}^{-2} \]

\[F = ma \]

\[\rho = \frac{m}{V} \quad P = \frac{F}{A} \]

\[a = \frac{v^2}{R} \]

\[V = \frac{D}{T} \]

\[W = mg \]

\[U = \frac{Gm_1m_2}{R} \]

\[A_1v_1 = \text{const} \]

\[P + \frac{1}{2}\rho v^2 + \rho g y = \text{const} \]

mass of earth = \(5.98 \times 10^{24}\) kg

radius of earth = \(6.37 \times 10^6\) m

1 atm = \(1.01 \times 10^5\) N/m²

density of water = \(1.00\frac{g}{\text{cm}^3}\)