| **Reading**: Textbook, Section 7.1 & 7.2 |
| **Assignments**: Sec 7.1, 7.2 |
| **Attendance**: De–Lightfully Encouraged |

Week 12 Overview

- Sec 7.1 Recurrence Relations
- Sec 7.2 Solving Linear Recurrence Relations
A recursive definition of a sequence specifies one or more initial terms plus a rule for determining subsequent terms from those that precede them.

A recurrence relation for the sequence \(\{a_n\} \) is an equation that expresses \(a_n \) in terms of one or more of the previous terms of the sequence, namely, \(a_0, a_1, \ldots, a_{n-1} \), for all integers \(n \) with \(n \geq n_0 \), where \(n_0 \) is a nonnegative integer.

The initial conditions for a sequence specify the terms that precede the first term where the recurrence relation takes effect.
A sequence is called a **solution** of a recurrence relation if its terms satisfy the recurrence relation.

A **Recurrence Relation** is a way to define a function by an expression involving the same function.
Modeling with Recurrence Relations – Rabbits

- A pair of rabbits (one of each sex) is placed on an island. A pair of rabbits does not breed until they are 2 months old. After they are 2 months old, each pair produces another pair each month.

- **Fibonacci Numbers** (Pairs of Rabbits)

 \[F(0) = 1, \quad F(1) = 1, \quad F(n) = F(n-1) + F(n-2) \]

- If we wish to compute the 120th Fibonacci Number, \(F(120) \), we could compute \(F(0) \), \(F(1) \), \(F(2) \), \(\ldots \), \(F(118) \), and \(F(119) \) to arrive at \(F(120) \).

- Thus, to compute \(F(\mathbb{k}) \) in this manner would take \(\mathbb{k} \) steps.
It would be more convenient, not to mention more efficient, to have an explicit or closed form expression to compute $F(n)$.

Actually, for Fibonacci numbers, it’s:

$$F(n) = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

\(\forall\) natural numbers \(n \geq 1\)
General problem: A person makes a deposit (principle) into a savings account which yields a yearly interest rate, compounded annually. How much will be in the account after 30 years?

Let \(P_n \) represent the amount in the account after \(n \) years.

Since \(P_n \) will equal the amount after \(n - 1 \) years plus interest, the sequence \(\{ P_n \} \) satisfies the recurrence relation:

\[
P_n = P_{n-1} + rP_{n-1} = (1 + r)P_{n-1}
\]
Recurrence Relations – Compound Interest

- We can use an iterative approach to find a formula for P_n:

 $P_1 = (1 + r)P_0$

 $P_2 = (1 + r)P_1 = (1 + r)^2P_0$

 $P_3 = (1 + r)P_2 = (1 + r)^3P_0$

 \vdots

 $P_n = (1 + r)P_{n-1} = (1 + r)^n P_0$

- Let’s assume $10,000 was deposited at 11% interest rate, compounded annually, for 30 years.

- Then $P_{30} = (1.11)^{30}10,000 = $228,922.97

- See other examples of modeling with RR in textbook.
Section 7.2 — Solving Recurrence Relations

- Recurrence relations which express the terms of a sequence as a **linear combination of previous terms** can be explicitly solved in a systematic way.

- **Definition** A **linear homogeneous recurrence relation of degree k with constant coefficients** is a recurrence relation of the form:

 \[a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} \]

 where \(c_1, c_2, \ldots, c_k \) are real numbers, and \(c_k \neq 0 \)
- **Linear**: the right-hand side is a sum of multiples of the previous terms of the sequence.

- **Homogeneous**: no terms occur that are not multiples of the a_j’s

- **Constant Coefficients**: the coefficients of all the terms of the sequence are constants (rather than functions dependent on n)

- **Degree**: is k because a_n is expressed in terms of the previous k terms of the sequence.
A sequence satisfying the recurrence relation in the definition is uniquely determined by this recurrence relation and the k initial conditions:

$$a_0 = C_0, \quad a_1 = C_1, \quad \ldots, \quad a_{k-1} = C_{k-1},$$
Examples of linear homogeneous recurrence relations:

\[P_n = 3P_{n-1} \quad \text{degree one} \]
\[f_n = f_{n-1} + f_{n-2} \quad \text{degree two} \]
\[a_n = a_{n-5} \quad \text{degree five} \]

Examples which are not linear homogeneous recurrence relations:

\[a_n = a_{n-1} + a^2_{n-2} \quad \text{not linear} \]
\[H_n = 2H_{n-1} + 2 \quad \text{not homogeneous} \]
\[B_n = nB_{n-5} \quad \text{doesn’t have constant coefficient} \]
Solving Linear Homogeneous Recurrence Relations with Constant Coefficients

Idea: look for solutions of the form $a_n = r^n$, where r is a constant.

Note: $a_n = r^n$ is a solution of the recurrence relation:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

if and only if

$$r^n = c_1 r^{n-1} + c_2 r^{n-2} + \ldots + c_k r^{n-k}$$
Divide both sides of the previous equation by r^{n-k}, and subtract the right-hand side:

$$r^k - c_1 r^{k-1} - c_2 r^{k-2} - \ldots - c_{k-1} r - c_k = 0$$

This is the **characteristic equation** of the recurrence relation.

Note: The sequence $\{a_n\}$ with $a_n = r^n$ is a solution IFF r is a solution to the characteristic equation.
The solutions of the characteristic equation are called the **characteristic roots** of the recurrence relation.

They can be used to create an explicit formula for all the solutions of the recurrence relation.
Characteristic Roots

Theorem 1. Let c_1 and c_2 be real numbers. Suppose that

$$r^2 - c_1 r - c_2 = 0$$

has two distinct roots, r_1 and r_2. Then the sequence $\{a_n\}$ is a solution of the recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$

if and only if

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$$

for $n = 0, 1, 2, \ldots$, where α_1 and α_2 are constants.
Solving Recurrence Relations, Example I

Let: \(a_0 = 2, \quad a_1 = 7, \) and \(a_n = a_{n-1} + 2a_{n-2} \)

We see that \(c_1 = 1 \) and \(c_2 = 2 \)

Characteristic Equation: \(r^2 - r - 2 = 0 \)

Roots: \(r = 2 \) and \(r = -1 \)

Thus, the sequence \(\{a_n\} \) is a solution to the recurrence relation IFF

\[
a_n = \alpha_1 2^n + \alpha_2 (-1)^n
\]

for some constants \(\alpha_1 \) and \(\alpha_2 \)
From the initial conditions, it follows that:

\[
\begin{align*}
a_0 &= 2 = \alpha_1 (2^0) + \alpha_2 (-1)^0 \\
a_1 &= 7 = \alpha_1 (2^1) + \alpha_2 (-1)^1
\end{align*}
\]

Solving these two equations yields:

\[
\alpha_1 = 3 \quad \text{and} \quad \alpha_2 = -1
\]

Therefore, the **solution** to the recurrence relation and initial conditions is the sequence \(\{a_n\} \) with:

\[
a_n = 3(2)^n - (-1)^n
\]
Solving Recurrence Relations, Example II

Let: \(F_0 = 0, \quad F_1 = 1, \quad \text{and} \quad F_n = F_{n-1} + F_{n-2} \)

We see that \(c_1 = 1 \) and \(c_2 = 1 \)

Characteristic Equation: \(r^2 - r - 1 = 0 \)

Roots: \(r = \frac{1 + \sqrt{5}}{2} \quad \text{and} \quad r = \frac{1 - \sqrt{5}}{2} \)

Thus, it follows that the Fibonacci numbers are given by

\[
F_n = \alpha_1 \left(\frac{1 + \sqrt{5}}{2} \right)^n + \alpha_2 \left(\frac{1 - \sqrt{5}}{2} \right)^n
\]

for some constants \(\alpha_1 \) and \(\alpha_2 \)
Solving Recurrence Relations, Example II — Cont.

From the initial conditions, it follows that:

\[F_0 = 0 = \alpha_1 + \alpha_2 \]
\[F_1 = 1 = \alpha_1 \left(\frac{1+\sqrt{5}}{2} \right) + \alpha_2 \left(\frac{1-\sqrt{5}}{2} \right) \]

Solving these two equations yields:

\[\alpha_1 = \frac{1}{\sqrt{5}} \quad \text{and} \quad \alpha_2 = -\frac{1}{\sqrt{5}} \]

Therefore, the solution to the recurrence relation and initial conditions is the sequence \(\{F_n\} \) with:

\[F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n \]
Solving Recurrence Relations, Example III

Let: \(a_0 = 1, \ a_1 = 1, \) and \(a_n = 2a_{n-1} + 3a_{n-2} \)

We see that \(c_1 = 2 \) and \(c_2 = 3 \)

Characteristic Equation: \(r^2 - 2r - 3 = 0 \)

Roots: \(r = 3 \) and \(r = -1 \)

Thus, the sequence \(\{a_n\} \) is a solution to the recurrence relation IFF

\[a_n = \alpha_1 3^n + \alpha_2 (-1)^n \]

for some constants \(\alpha_1 \) and \(\alpha_2 \)
From the initial conditions, it follows that:

\[a_0 = 1 = \alpha_1 + \alpha_2 \]
\[a_1 = 1 = \alpha_1 (3) + \alpha_2 (-1) \]

Solving these two equations yields: \(\alpha_1 = \frac{1}{2} \) and \(\alpha_2 = \frac{1}{2} \)

Therefore, the solution to the recurrence relation and initial conditions is the sequence \(\{a_n\} \) with:

\[a_n = \frac{1}{2}(3)^n + \frac{1}{2}(-1)^n \]
Let: \(a_0 = 1, \quad a_1 = -2, \quad \text{and} \quad a_n = 5a_{n-1} - 6a_{n-2} \)

We see that \(c_1 = 5 \) and \(c_2 = -6 \)

Characteristic Equation: \(r^2 - 5r + 6 = 0 \)

Roots: \(r = 2 \) and \(r = 3 \)

Thus, the sequence \(\{a_n\} \) is a solution to the recurrence relation IFF

\[
a_n = \alpha_1 2^n + \alpha_2 3^n
\]

for some constants \(\alpha_1 \) and \(\alpha_2 \)
From the initial conditions, it follows that:

\[
\begin{align*}
a_0 &= 1 = \alpha_1 + \alpha_2 \\
a_1 &= -2 = \alpha_1 \cdot 2 + \alpha_2 \cdot 3
\end{align*}
\]

Solving these two equations yields:

\[
\begin{align*}
\alpha_1 &= 5 \\ \alpha_2 &= -4
\end{align*}
\]

Therefore, the solution to the recurrence relation and initial conditions is the sequence \(\{a_n\} \) with:

\[
a_n = 5(2)^n - 4(3)^n
\]
Solving Recurrence Relations, Example V

Let: \(a_0 = 0, \quad a_1 = 1, \quad \text{and} \quad a_n = a_{n-1} + 6a_{n-2} \)

We see that \(c_1 = 1 \) and \(c_2 = 6 \)

Characteristic Equation: \(r^2 - r - 6 = 0 \)

Roots: \(r = 3 \) and \(r = -2 \)

Thus, the sequence \(\{a_n\} \) is a solution to the recurrence relation IFF

\[
a_n = \alpha_1 3^n + \alpha_2 (-2)^n
\]

for some constants \(\alpha_1 \) and \(\alpha_2 \)
Solving Recurrence Relations, Example V

From the initial conditions, it follows that:

\[
\begin{align*}
a_0 &= 0 = \alpha_1 + \alpha_2 \\
a_1 &= 1 = \alpha_1 (3) + \alpha_2 (-2)
\end{align*}
\]

Solving these two equations yields:

\[
\alpha_1 = \frac{1}{5} \quad \text{and} \quad \alpha_2 = -\frac{1}{5}
\]

Therefore, the \textit{solution} to the recurrence relation and initial conditions is the sequence \(\{a_n\} \) with:

\[
a_n = \frac{1}{5}(3)^n - \frac{1}{5}(-2)^n
\]
What To Do When There’s Only One Root?

Theorem 1 does not apply when there is a single characteristic root of multiplicity two.
Theorem 2. Let \(c_1 \) and \(c_2 \) be real numbers. Suppose that

\[
r^2 - c_1 r - c_2 = 0
\]

has only one root, \(r_0 \). Then the sequence \(\{a_n\} \) is a solution of the recurrence relation

\[
a_n = c_1 a_{n-1} + c_2 a_{n-2}
\]

if and only if

\[
a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n
\]

for \(n = 0, 1, 2, \ldots \), where \(\alpha_1 \) and \(\alpha_2 \) are constants.

Notice the **extra factor** of \(n \) in the second term!
Let: \(a_0 = 1, \ a_1 = 6, \text{ and } a_n = 6a_{n-1} - 9a_{n-2} \)

We see that \(c_1 = 6 \) and \(c_2 = -9 \)

Characteristic Equation: \(r^2 - 6r + 9 = 0 \)

Root: \(r = 3 \) with multiplicity 2

Thus, the sequence \(\{a_n\} \) is a solution to the recurrence relation \(IFF \)

\[
a_n = \alpha_1 3^n + \alpha_2 n(3)^n
\]

for some constants \(\alpha_1 \) and \(\alpha_2 \)
From the initial conditions, it follows that:

\[
\begin{align*}
a_0 &= 1 = \alpha_1 \\
a_1 &= 6 = \alpha_1 (3) + \alpha_2 (3)
\end{align*}
\]

Solving these two equations yields: \(\alpha_1 = 1 \) and \(\alpha_2 = 1 \)

Therefore, the solution to the recurrence relation and initial conditions is the sequence \(\{a_n\} \) with:

\[
a_n = (3)^n + n(3)^n
\]
Single Root, Example II

Let: \(a_0 = 1, \quad a_1 = 3, \quad \text{and} \quad a_n = 4a_{n-1} - 4a_{n-2} \)

We see that \(c_1 = 4 \) and \(c_2 = -4 \)

Characteristic Equation: \(r^2 - 4r + 4 = 0 \)

Root: \(r = 2 \) with multiplicity 2

Thus, the sequence \(\{a_n\} \) is a solution to the recurrence relation IFF

\[
a_n = \alpha_1 2^n + \alpha_2 n2^n
\]

for some constants \(\alpha_1 \) and \(\alpha_2 \)
From the initial conditions, it follows that:

\[
\begin{align*}
a_0 &= 1 = \alpha_1 \\
a_1 &= 3 = \alpha_1 (2) + \alpha_2 (2)
\end{align*}
\]

Solving these two equations yields: \(\alpha_1 = 1 \) and \(\alpha_2 = \frac{1}{2} \)

Therefore, the solution to the recurrence relation and initial conditions is the sequence \(\{a_n\} \) with:

\[
a_n = 2^n + \frac{1}{2}n2^n = 2^n + n2^{n-1}
\]
Single Root, Example III

Let: \(a_0 = 1, \ a_1 = 12, \ \text{and} \ a_n = 8a_{n-1} - 16a_{n-2}\)

We see that \(c_1 = 8\) and \(c_2 = -16\)

Characteristic Equation: \(r^2 - 8r + 16 = 0\)

Root: \(r = 4\) with multiplicity 2

Thus, the sequence \(\{a_n\}\) is a solution to the recurrence relation IFF

\[a_n = \alpha_1 4^n + \alpha_2 n4^n\]

for some constants \(\alpha_1\) and \(\alpha_2\)
Single Root, Example III — Cont.

From the initial conditions, it follows that:

\[
\begin{align*}
a_0 &= 1 = \alpha_1 \\
a_1 &= 12 = \alpha_1 (4) + \alpha_2 (4)
\end{align*}
\]

Solving these two equations yields: \(\alpha_1 = 1 \) and \(\alpha_2 = 2 \)

Therefore, the solution to the recurrence relation and initial conditions is the sequence \(\{a_n\} \) with:

\[
a_n = (4)^n + 2n(4)^n
\]
Single Root, Example IV

Let: \(a_0 = 2, \quad a_1 = 5, \) and \(a_n = 2a_{n-1} - a_{n-2} \)

We see that \(c_1 = 2 \) and \(c_2 = -1 \)

Characteristic Equation: \(r^2 - 2r + 1 = 0 \)

Root: \(r = 1 \) with multiplicity 2

Thus, the sequence \(\{a_n\} \) is a solution to the recurrence relation IFF

\[
a_n = \alpha_1 1^n + \alpha_2 n(1)^n
\]

for some constants \(\alpha_1 \) and \(\alpha_2 \)
From the initial conditions, it follows that:

\[
\begin{align*}
 a_0 &= 2 = \alpha_1 \\
 a_1 &= 5 = \alpha_1 (1) + \alpha_2 (1)
\end{align*}
\]

Solving these two equations yields: \(\alpha_1 = 2 \) and \(\alpha_2 = 3 \)

Therefore, the solution to the recurrence relation and initial conditions is the sequence \(\{a_n\} \) with:

\[
a_n = 2(1)^n + 3n(1)^n = 2 + 3n
\]
Solving Recurrence Relations

Definition. A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.
Theorem 3. Let c_1, c_2, \ldots, c_k be real numbers. Suppose that the characteristic equation

$$r^k - c_1 r^{k-1} - \ldots - c_k = 0$$

has k distinct roots, r_1, r_2, \ldots, r_k. Then the sequence $\{a_n\}$ is a solution of the recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

if and only if

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \ldots + \alpha_k r_k^n$$

for $n = 0, 1, 2, \ldots$, where $\alpha_1, \alpha_2, \ldots, \alpha_k$ are constants.
Multiple Distinct Roots, Example I

Let: \(a_0 = 2, \ a_1 = 5, \ a_2 = 15, \ \text{and} \)
\[
a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}
\]

We see that \(c_1 = 6, \ c_2 = -11, \ \text{and} \ c_3 = 6 \)

Characteristic Equation:
\[
r^3 - 6r^2 + 11r - 6 = (r - 1)(r - 2)(r - 3) = 0
\]

Roots: \(r = 1, \ r = 2, \ \text{and} \ r = 3 \)

Thus, the sequence \(\{a_n\} \) is a solution to the recurrence relation IFF
\[
a_n = \alpha_1 1^n + \alpha_2 2^n + \alpha_3 3^n
\]

for some constants \(\alpha_1, \ \alpha_2, \ \text{and} \ \alpha_3 \)
From the initial conditions, it follows that:

\[
\begin{align*}
 a_0 &= 2 = \alpha_1 + \alpha_2 + \alpha_3 \\
 a_1 &= 5 = \alpha_1 + \alpha_2 \cdot 2 + \alpha_3 \cdot 3 \\
 a_2 &= 15 = \alpha_1 + \alpha_2 \cdot 4 + \alpha_3 \cdot 9
\end{align*}
\]

Solving: \(\alpha_1 = 1 \), \(\alpha_2 = -1 \), and \(\alpha_3 = 2 \)

Therefore, the solution to the recurrence relation and initial conditions is the sequence \(\{a_n\} \) with:

\[
a_n = 1 - 2^n + 2 \cdot 3^n.
\]
Let: \(a_0 = 4, \ a_1 = -9, \ a_2 = -9, \) and
\[a_n = 4a_{n-1} - a_{n-2} - 6a_{n-3} \]

We see that \(c_1 = 4, \ c_2 = -1, \) and \(c_3 = -6 \)

Characteristic Equation:
\[r^3 - 4r^2 + r + 6 = (r + 1)(r - 2)(r - 3) = 0 \]

Roots: \(r = -1, \ r = 2, \) and \(r = 3 \)

Thus, the sequence \(\{a_n\} \) is a solution to the recurrence relation IFF
\[a_n = \alpha_1 (-1)^n + \alpha_2 2^n + \alpha_3 3^n \]
for some constants \(\alpha_1, \ \alpha_2, \) and \(\alpha_3 \)
Multiple Distinct Roots, Example II — Cont.

From the initial conditions, it follows that:

\[a_0 = 4 = \alpha_1 (-1)^0 + \alpha_2 2^0 + \alpha_3 3^0 \]
\[= \alpha_1 + \alpha_2 + \alpha_3 \]

\[a_1 = -9 = \alpha_1 (-1)^1 + \alpha_2 2^1 + \alpha_3 3^1 \]
\[= -\alpha_1 + 2 \alpha_2 + 3 \alpha_3 \]

\[a_2 = -9 = \alpha_1 (-1)^2 + \alpha_2 2^2 + \alpha_3 3^2 \]
\[= \alpha_1 + 4 \alpha_2 + 9 \alpha_3 \]
Multiple Distinct Roots, Example II — Cont.

Solving: \(\alpha_1 = 5 \), \(\alpha_2 = 1 \), and \(\alpha_3 = -2 \)

Therefore, the solution to the recurrence relation and initial conditions is the sequence \(\{a_n\} \) with:

\[
a_n = 5(-1)^n + 2^n - 2(3)^n.
\]
Solutions to General Recurrence Relations

The next theorem states the most general result about linear homogeneous recurrence relations with constant coefficients, allowing the characteristic equation to have **multiple** roots.

Key Point: for each root r of the characteristic equation, the general solution has a summand of the form $P(n)r^n$, where $P(n)$ is a polynomial of degree $m - 1$, with m the **multiplicity of this root**.
Theorem 4. Let c_1, c_2, \ldots, c_k be real numbers. Suppose that the characteristic equation

$$r^k - c_1 r^{k-1} - \ldots - c_k = 0$$

- has t distinct roots, r_1, r_2, \ldots, r_t, with
- multiplicities m_1, m_2, \ldots, m_t, respectively, so
 - $m_i \geq 1$ for $i = 1, 2, \ldots, t$, and
 - $m_1 + m_2 + \ldots + m_t = k$.
Then a sequence \(\{a_n\} \) is a solution of the recurrence relation

\[
a_n = c_1a_{n-1} + c_2a_{n-2} + \ldots + c_ka_{n-k}
\]

if and only if

\[
a_n = (\alpha_{1,0} + \alpha_{1,1}n + \ldots + \alpha_{1,m_1-1}n^{m_1-1})r_1^n \\
+ (\alpha_{2,0} + \alpha_{2,1}n + \ldots + \alpha_{2,m_2-1}n^{m_2-1})r_2^n \\
+ \ldots \\
+ (\alpha_{t,0} + \alpha_{t,1}n + \ldots + \alpha_{t,m_t-1}n^{m_t-1})r_t^n
\]

for \(n = 0, 1, 2, \ldots \), where the \(\alpha_{i,j} \) are constants

for \(1 \leq i \leq t \) and \(0 \leq j \leq m^i - 1 \)
Multiple Roots, Example I

If a linear homogeneous recurrence relation has a characteristic equation with roots 2, 2, 2, 5, 5, and 9, then the form of a general solution is:

\[
a_n = (\alpha_{1,0} + \alpha_{1,1} n + \alpha_{1,2} n^2)2^n + (\alpha_{2,0} + \alpha_{2,1} n)5^n + (\alpha_{3,0})9^n
\]
Multiple Roots, Example II

Let: \(a_0 = 1, \ a_1 = -2, \ a_2 = -1, \) and
\[
a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}
\]

We see that \(c_1 = -3, \ c_2 = -3, \) and \(c_3 = -1 \)

Characteristic Equation: \(r^3 + 3r^2 + 3r + 1 = 0 \)

Since \(r^3 + 3r^2 + 3r + 1 = (r + 1)^3, \) the characteristic equation has a single root, \(r = -1, \) of multiplicity three.

By Theorem 4., the solutions of this recurrence relation are of the form:
\[
a_n = \alpha_{1,0} (-1)^n + \alpha_{1,1} n(-1)^n + \alpha_{1,2} n^2(-1)^n
\]
for some constants \(\alpha_{1,0}, \ \alpha_{1,1}, \ \text{and} \ \alpha_{1,2} \)
Multiple Roots, Example II — Cont.

From the initial conditions, it follows that:

\[
\begin{align*}
a_0 &= 1 = \alpha_{1,0} (-1)^0 + \alpha_{1,1} 0^1(-1)^0 + \alpha_{1,2} 0^2(-1)^0 \\
a_1 &= -2 = \alpha_{1,0} (-1)^1 + \alpha_{1,1} 1^1(-1)^1 + \alpha_{1,2} 1^2(-1)^1 \\
a_2 &= -1 = \alpha_{1,0} (-1)^2 + \alpha_{1,1} 2^1(-1)^2 + \alpha_{1,2} 2^2(-1)^2 \\
\end{align*}
\]

or

\[
\begin{align*}
1 &= \alpha_{1,0} \\
-2 &= - \alpha_{1,0} - \alpha_{1,1} - \alpha_{1,2} \\
-1 &= \alpha_{1,0} + 2 \alpha_{1,1} + 4 \alpha_{1,2}
\end{align*}
\]
Solving these three equations simultaneously yields:

\[\alpha_{1,0} = 1, \quad \alpha_{1,1} = 3, \quad \alpha_{1,2} = -2 \]

Thus, the unique solution to the recurrence relation and initial conditions is the sequence \(\{a_n\} \) with:

\[a_n = (1 + 3n - 2n^2)(-1)^n \]
Let: \(a_0 = 1, \ a_1 = 1, \ a_2 = 2, \) and
\[
a_n = 3a_{n-1} - 3a_{n-2} + a_{n-3}
\]

We see that \(c_1 = 3, \ c_2 = -3, \) and \(c_3 = 1 \)

Characteristic Equation: \(r^3 - 3r^2 + 3r - 1 = 0 \)

Since \(r^3 - 3r^2 + 3r - 1 = (r - 1)^3 \), the characteristic equation has a single root, \(r = 1 \), of multiplicity three.

By Theorem 4., the solutions of this recurrence relation are of the form:
\[
a_n = \alpha_{1,0} (1)^n + \alpha_{1,1} n(1)^n + \alpha_{1,2} n^2(1)^n
\]

for some constants \(\alpha_{1,0}, \ \alpha_{1,1}, \) and \(\alpha_{1,2} \)
From the initial conditions, it follows that:

\[a_0 = 1 = \alpha_{1,0} (1)^0 + \alpha_{1,1} 0^1(1)^0 + \alpha_{1,2} 0^2(1)^0 \]
\[a_1 = 1 = \alpha_{1,0} (1)^1 + \alpha_{1,1} 1^1(1)^1 + \alpha_{1,2} 1^2(1)^1 \]
\[a_2 = 2 = \alpha_{1,0} (1)^2 + \alpha_{1,1} 2^1(1)^2 + \alpha_{1,2} 2^2(1)^2 \]

or

\[1 = \alpha_{1,0} \]
\[1 = \alpha_{1,0} + \alpha_{1,1} + \alpha_{1,2} \]
\[2 = \alpha_{1,0} + 2 \alpha_{1,1} + 4 \alpha_{1,2} \]

Solving these three equations simultaneously yields:

\[\alpha_{1,0} = 1, \quad \alpha_{1,1} = -\frac{1}{2}, \quad \alpha_{1,2} = \frac{1}{2} \]
Thus, the unique solution to the recurrence relation and initial conditions is the sequence \(\{ a_n \} \) with:

\[
 a_n = (1 - \frac{1}{2}n + \frac{1}{2}n^2)(1)^n \\
 = 1 - \frac{1}{2}n + \frac{1}{2}n^2 \\
 = \frac{2 - n + n^2}{2}
\]
Let: \(a_0 = 0, \ a_1 = 1, \ a_2 = 2, \ a_3 = 3, \) and
\(a_n = 2a_{n-2} - a_{n-4} \)

We see that \(c_1 = 0, \ c_2 = 2, \ c_3 = 0, \) and \(c_4 = -1 \)

Characteristic Equation:
\(r^4 - 0r^3 - 2r^2 - 0r + 1 = 0 \)

or,
\(r^4 - 2r^2 + 1 = 0 \)

Since
\(r^4 - 2r^2 + 1 = (r^2 - 1)^2 = (r - 1)^2(r + 1)^2, \) the characteristic equation has two roots, \(r_1 = 1 \) and \(r_2 = -1, \) each of multiplicity two.

Solutions of this recurrence relation are of the form:
\[
a_n = (\alpha_{1,0} + \alpha_{1,1} n)(1)^n + (\alpha_{2,0} + \alpha_{2,1} n)(-1)^n
\]

for some constants \(\alpha_{1,0}, \ \alpha_{1,1}, \ \alpha_{2,0}, \) and \(\alpha_{2,1} \)
Multiple Roots, Example IV — Cont.

From the initial conditions, it follows that:

\[a_0 = 0 = (\alpha_{1,0} + \alpha_{1,1} 0^1)(1)^0 + (\alpha_{2,0} + \alpha_{2,1} 0^1)(-1)^0 = \alpha_{1,0} + \alpha_{2,0} \]

\[a_1 = 1 = (\alpha_{1,0} + \alpha_{1,1} 1^1)(1)^1 + (\alpha_{2,0} + \alpha_{2,1} 1^1)(-1)^1 = \alpha_{1,0} + \alpha_{1,1} - \alpha_{2,0} - \alpha_{2,1} \]

\[a_2 = 2 = (\alpha_{1,0} + \alpha_{1,1} 2^1)(1)^2 + (\alpha_{2,0} + \alpha_{2,1} 2^1)(-1)^2 = \alpha_{1,0} + 2\alpha_{1,1} + \alpha_{2,0} + 2\alpha_{2,1} \]

\[a_3 = 3 = (\alpha_{1,0} + \alpha_{1,1} 3^1)(1)^3 + (\alpha_{2,0} + \alpha_{2,1} 3^1)(-1)^3 = \alpha_{1,0} + 3\alpha_{1,1} - \alpha_{2,0} - 3\alpha_{2,1} \]

Solving these three equations simultaneously yields:

\[\alpha_{1,0} = \alpha_{2,0} = \alpha_{2,1} = 0 \text{ and } \alpha_{1,1} = 1 \]
Thus, the unique solution to the recurrence relation and initial conditions is the sequence \(\{a_n\} \) with:

\[
a_n = (0 + 1n)1^n + (0 + 0n)(-1)^n
\]

\[
= n
\]