2012 Academic Challenge

CHEMISTRY TEST - STATE FINAL

This Test Consists of 40 Questions

Chemistry Test Production Team
Doug Mulford, Emory University - Author/Team Leader
Tracy Morkin, Emory University - Author
Nancy Carter Dopke, Alma College - Reviewer
Mary Weaver, WYSE - Coordinator of Test Production

GENERAL DIRECTIONS

Please read the following instructions carefully. This is a timed test; any instructions from the test supervisor should be followed promptly.

The test supervisor will give instructions for filling in any necessary information on the answer sheet. Most Academic Challenge sites will ask you to indicate your answer to each question by marking an oval that corresponds to the correct answer for that question. Only one oval should be marked to answer each question. Multiple ovals will automatically be graded as incorrect answers.

Be sure ovals are marked as \bigcirc, not $\bullet, \bigoplus, \bigcirc$, etc.

If you wish to change an answer, erase your first mark completely before marking your new choicE)
You are advised to use your time effectively and to work as rapidly as you can without losing accuracy. Do not waste your time on questions that seem too difficult for you. Go on to the other questions, and then come back to the difficult ones later if time remains.
*** TIME: 40 MINUTES

DO NOT OPEN TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO!

© 2012 Worldwide Youth in Science and Engineering
"WYSE", "Worldwide Youth in Science and Engineering" and the "WYSE Design" are service marks of and this work is the Copyright © 2012 of the Board of Trustees of the University of Illinois at Urbana - Champaign. All rights reserved.

Potentially Useful Information

$\mathrm{q}=\mathrm{m} \bullet \mathrm{C}_{\mathrm{s}} \bullet \Delta \mathrm{T}$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} K_{\mathrm{b}} \bullet \mathrm{m}$
$\mathrm{P}_{\text {solvent }}=\mathrm{C}_{\text {solvent }} \bullet \mathrm{P}^{\circ}{ }_{\text {solvent }}$
$\ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t$
$[A]_{t}-[A]_{0}=-k t$
$\ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{-\Delta H_{r x n}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}=\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[H A]}\right)$
$\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}$
$\Delta E=B\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{f i}^{2}}\right)$
$\mathrm{F}=96485 \mathrm{C} / \mathrm{mol}$
$\mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K} ; 8.3145 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
$1.0 \mathrm{~kg}=2.2 \mathrm{lb}$
$1.0 \mathrm{in}=2.54 \mathrm{~cm}$
$1 \mathrm{lb}=453.59 \mathrm{~g}$
$\Delta \mathrm{T}_{\mathrm{f}}=-\mathrm{i} K_{\mathrm{f}} \bullet \mathrm{m}$
$S_{\text {gas }}=\mathrm{k}_{\mathrm{H}} \bullet \mathrm{P}_{\text {gas }}$
$k=A e^{-E a / R T}$
$\frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}=k t$
$\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{-E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\ln \left(\frac{P_{2}}{P_{1}}\right)=\frac{-\Delta H_{\text {vap }}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$\Delta \mathrm{S}_{\text {surr }}=\frac{-\Delta H_{\text {sys }}}{T}$
$\mathrm{E}_{\text {cell }}{ }^{\circ}=\mathrm{E}_{\text {red }}{ }^{\circ}+\mathrm{E}_{\mathrm{ox}}{ }^{\circ}$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$B=-2.18 \times 10^{-18} \mathrm{~J}$
$N_{A}=6.022 \times 10^{23}$
$1 \mathrm{~atm}=101,325 \mathrm{~Pa}=1.01325 \mathrm{bar}$
$1 \mathrm{~J}=1 \mathrm{~N} \mathrm{~m}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}=0.239 \mathrm{cal}$
$\mathrm{E}=\mathrm{hc} / \lambda$

Assume all gases behave ideally unless specifically told to do otherwise Assume all solutions are aqueous and at $25^{\circ} \mathrm{C}$ unless specifically told otherwise Assume all gases are at STP unless specifically told otherwise

Simple Rules for the Solubility of Salts in Water

1. Most nitrates are soluble
2. Most salts containing Group 1 ions or ammonium $\left(\mathrm{NH}_{4}^{+}\right)$are soluble
3. Most chloride, bromide, and iodide salts are soluble except those of $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}$, and $\mathrm{Hg}_{2}{ }^{2+}$.
4. Most sulfates are soluble with the exception of $\mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Hg}_{2}{ }^{2+}$, and Ca^{2+}
5. Most hydroxide salts are only slightly soluble with the exception of Group 1 hydroxides. Group $2\left(\mathrm{Ba}^{2+}\right.$ to $\left.\mathrm{Ca}^{2+}\right)$ are slightly soluble.
6. Most sulfides, carbonates, chromates, and phosphates are only slightly soluble.

WYSE - Academic Challenge
Chemistry Test (State Final) - 2012

1. A particular metal in a photoelectric cell has a threshold energy that corresponds to a photon of 500 nm . Which of the following statements is incorrect?
A) If the metal is irradiated with 600 nm light, no electrons will be ejected.
B) If the metal is irradiated with 250 nm light, twice as many electrons will be ejected than if it was irradiated with 500 nm light.
C) If the metal is irradiated with 450 nm light, the ejected electrons will have a greater kinetic energy than if the metal was irradiated with 500 nm light.
D) If the metal is irradiated with 500 nm light with an increased intensity, more electrons will be ejected.
E) If the metal is irradiated with 10 photons of 500 nm light 10 electrons will be ejected.
2. Diethyl ether is a volatile organic compound. The vapor pressure of diethyl ether is 401 mm Hg at $18.0^{\circ} \mathrm{C}$ and the $\Delta \mathrm{H}_{\text {vap }}=26.0 \mathrm{~kJ} / \mathrm{mol}$. Calculate the vapor pressure of diethyl ether at $40.0^{\circ} \mathrm{C}$.
A) 401 mm Hg
B) 517 mm Hg
C) 598 mm Hg
D) 605 mm Hg
E) 853 mm Hg
3. How many O_{2} molecules are in 1 mole of SO_{2} ?
A) 1
B) $1 * 6.022 \times 10^{23}$
C) $2 * 6.022 \times 10^{23}$
D) $4 * 6.022 \times 10^{23}$
E) None
4. Identify the element that forms an ion with a +2 charge and 10% more protons than electrons.
A) Ca
B) Ti
C) V
D) Sr
E) Zr
5. A given xenon fluorine compound has the formula $\mathrm{XeF}_{\mathrm{n}}$, where n is some whole number. If 8.05×10^{21} molecules of $X e F_{n}$ weigh 2.77 g , what is the value of n ?
A) 1
B) 2
C) 4
D) 5
E) 6
6. The concentration of commercially available nitric acid $\left(\mathrm{HNO}_{3}, \mathrm{MW}=63.02 \mathrm{~g} / \mathrm{mol}\right)$ is 70.0% by mass, which is equivalent to 15.9 M . What is the density of this solution in g / mL ?
A) $0.699 \mathrm{~g} / \mathrm{mL}$
B) $1.43 \mathrm{~g} / \mathrm{mL}$
C) $1.92 \mathrm{~g} / \mathrm{mL}$
D) $2.25 \mathrm{~g} / \mathrm{mL}$
E) $3.32 \mathrm{~g} / \mathrm{mL}$
7. A $230 . \mathrm{mL}$ sample of a $0.275 \mathrm{M} \mathrm{CaCl}_{2}$ solution is left on a hot plate overnight; the following morning, the solution is 1.10 M . What volume of water evaporated from the 0.275 M solution?
A) 27.5 mL
B) 57.5 mL
C) 82.5 mL
D) 147 mL
E) 173 mL
8. To keep the fields green for Major League Baseball, the grounds keepers have to fertilize the outfields with ammonia based fertilizers. The ammonia is produced using the Haber process, which is shown below. If the fertilizer makers need 15.00 kg of ammonia to make the fertilizer for Opening Day, and the Haber process has an 82.0\% yield, how many kilograms of nitrogen gas must be used?

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \quad \mathrm{NH}_{3}(\mathrm{~g}) \text { [unbalanced] }
$$

A) 10.1 kg
B) 12.4 kg
C) 15.0 kg
D) 20.2 kg
E) 30.1 kg
9. A sample of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{M} . \mathrm{W} .=241.86 \mathrm{~g} / \mathrm{mol})$ is added to 100.0 mL of 0.0900 M KOH and a white solid forms after all of the $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ has reacted. If the remaining solution requires 50.00 mL of 0.125 M HCl to neutralize the excess KOH , what was the mass of the original $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ sample?
A) $9.16 \times 10^{-4} \mathrm{~g}$
B) $2.75 \times 10^{-3} \mathrm{~g}$
C) $2.22 \times 10^{-1} \mathrm{~g}$
D) $5.04 \times 10^{-1} \mathrm{~g}$
E) $6.65 \times 10^{-1} \mathrm{~g}$
10. In a particular experiment, $500 \mathrm{~cm}^{3}$ of a $1.0 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ solution is added to $500 \mathrm{~cm}^{3}$ of $1.0 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ in a coffee-cup calorimeter and the solution is quickly stirred. The rise in temperature $\left(\Delta T_{1}\right)$ is measured. The experiment is then repeated using $100 \mathrm{~cm}^{3}$ of the same solutions and the rise in temperature $\left(\Delta T_{2}\right)$ is measured. It is found that:
A) $\Delta \mathrm{T}_{1}$ is equal to $\Delta \mathrm{T}_{2}$
B) ΔT_{2} is five times as large as ΔT_{1}
C) ΔT_{1} is five times as large as ΔT_{2}
D) $\Delta \mathrm{T}_{2}$ is two times as large as $\Delta \mathrm{T}_{1}$
E) It is impossible to tell from the data given
11. Analysis of a sample of pure caffeine, the active ingredient in sodas and coffee as well as NoDoz'${ }^{\text {TM }}$, shows that a sample contains 18.26 g carbon, 6.081 g oxygen, 10.65 g nitrogen, and 1.91 g hydrogen and has a molar mass between 170. and 200. g/mol. What is the molecular formula of $\mathrm{NoDoz}^{\mathrm{TM}}$?
A) $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{ON}_{2}$
B) $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~N}_{3}$
C) $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~N}_{2}$
D) $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}_{4}$
E) $\mathrm{C}_{9} \mathrm{H}_{1} \mathrm{O}_{3} \mathrm{~N}_{3}$
12. An atom of element number 33 (As) is in its ground electronic state. Which one of the following sets of quantum numbers could not apply to any of its electrons?
A) $n=2$
B) $n=3$
C) $n=3$
D) $n=4$
$l=2$
$m_{l}=-1$
$I=0$
$m_{l}=2$
$I=0$
$m_{l}=0$
E) $n=4$
$m_{s}=+1 / 2$
$m_{l}=0$
$m_{s}=+1 / 2$
$m_{s}=-1 / 2$
$1=2$
$m_{l}=-2$
$m_{s}=-1 / 2$
$m_{s}=+1 / 2$
13. An electron in the $n=1$ level of a hydrogen atom absorbs a photon of $\lambda=93.8 \mathrm{~nm}$. To what energy level does the electron move to?
A) 2
B) 3
C) 4
D) 5
E) 6
14. Two different compounds have the formula $\mathrm{KrCl}_{2} \mathrm{I}_{2}$ (with Kr as the central atom). Which of the following is false concerning these two compounds?
A) Both compounds of $\mathrm{KrCl}_{2} \mathrm{I}_{2}$ contain at least one exception to the octet rule.
B) All of the halogen atoms in both compounds of $\mathrm{KrCl}_{2} \mathrm{I}_{2}$ are terminal.
C) Both compounds of $\mathrm{KrCl}_{2} \mathrm{I}_{2}$ are square planar.
D) Both compounds of $\mathrm{KrCl}_{2} \mathrm{I}_{2}$ are nonpolar.
E) Both compounds of $\mathrm{KrCl}_{2} \mathrm{I}_{2}$ will have the same shape.
15. Which of the following is the correct order for decreasing bond length of the CO bond?
A) $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{CO}_{3}{ }^{2-}$
B) $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{CO}_{3}{ }^{2-}$
C) $\mathrm{CO}_{3}{ }^{2-}, \mathrm{CO}_{2}, \mathrm{CO}$
D) $\mathrm{CO}_{3}{ }^{2-}, \mathrm{CO}, \mathrm{CO}_{2}$
E) $\mathrm{CO}_{2}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{CO}$
16. If the shape of $\mathrm{XF}_{3} \mathrm{O}^{\text {- }}$ is square planar, which of the following could be atom X , where X is the central atom?
A) Ne
B) P
C) Cl
D) Se
E) Xe
17. What is the coefficient on $\mathrm{MnO}_{4}^{-}(\mathrm{aq})$ when the following solution is balanced in acidic solution?

$$
\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{MnO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{Mn}^{2+}(\mathrm{aq})
$$

A) 1
B) 2
C) 3
D) 4
E) 5
18. The following rate data were collected for the decomposition of NOBr :

$$
2 \mathrm{NOBr}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})
$$

$[\mathrm{NOBr}]\left(\mathrm{mol} \mathrm{L}^{-1}\right) \quad$ Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$ $0.0450 \quad 1.62 \times 10^{-3}$ $0.0310 \quad 7.69 \times 10^{-4}$ $0.0095 \quad 7.22 \times 10^{-5}$

Based on the initial rate data above, what is the value of the rate constant?
A) $0.0360 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
B) $0.800 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
C) $1.25 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
D) $27.8 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
E) $277 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
19. The rate law for the reaction below is rate $=k\left[\mathrm{NO}_{2}\right]^{2}$.

$$
\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{CO}_{2}
$$

Which mechanism is consistent with this rate law?
A) $\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{CO}_{2}$
B) $\mathrm{NO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{NO}+\mathrm{NO}_{3}$ (slow)
$\mathrm{NO}_{3}+\mathrm{CO} \rightarrow \mathrm{NO}_{2}+\mathrm{CO}_{2}$ (fast)
C) $\mathrm{NO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{NO}+\mathrm{NO}_{3}$ (fast) $\mathrm{NO}_{3}+\mathrm{CO} \rightarrow \mathrm{NO}_{2}+\mathrm{CO}_{2}$ (slow)
D) $\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}_{3}+\mathrm{C}$ (slow) $\mathrm{NO}_{3}+\mathrm{C} \rightarrow \mathrm{NO}_{2}+\mathrm{CO}$ (fast)
E) None of these are consistent

Use the following diagram for questions 20 and 21. The results of the titrations of 100.0 mL samples of five different acids with 1.0 M NaOH are summarized in the following figure (acids are labeled a-e from bottom to top):

20. Which acid was the most concentrated before any NaOH was added?
A) acid a
B) acid b
C) acid c
D) acid d
E) acid e
21. Which acid has the strongest conjugate base?
A) acid a
B) acid b
C) acid c
D) acid d
E) acid e
22. Which of the following will be a buffer when dissolved in 1.0 L of water?
A) 0.1 mol NaOH and 0.2 mol HCl
B) 0.2 mol HBr and 0.1 mol NaOH
C) 0.3 mol KCl and 0.3 mol HCl
D) $0.2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.4 mol NaOH
E) $0.4 \mathrm{~mol} \mathrm{NH}_{3}$ and 0.2 mol HCl
23. A 1.35 m aqueous solution of compound X had a boiling point of $101.4^{\circ} \mathrm{C}$. Which one of the following could be compound X ? The boiling point elevation constant for water is 0.52 ${ }^{\circ} \mathrm{C} / \mathrm{m}$.
A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
B) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
C) $\mathrm{Na}_{3} \mathrm{PO}_{4}$
D) KCl
E) CaCl_{2}
24. Following is a list of properties of a sample of solid sulfur:
i. Brittle, crystalline solid.
ii. Melting point of $113^{\circ} \mathrm{C}$.
iii. Density of $2.1 \mathrm{~g} / \mathrm{cm}^{3}$.
iv. Combines with oxygen to form sulfur dioxide.

Which, if any, of these properties would be the same for one single atom of sulfur obtained from the sample?
A) i and ii only.
B) iv only.
C) iii and iv only.
D) All of these properties would be the same.
E) None of these properties would be the same.
25. In the lab one afternoon you perform a calorimetry experiment where you place 519 g of iron metal at $625^{\circ} \mathrm{C}$ into 101 g of water that is at $25.0^{\circ} \mathrm{C}$. How much of the water will vaporize? Note that the specific heat capacity of iron is $0.450 \mathrm{~J} / \mathrm{gK}$ and water is $4.184 \mathrm{~J} / \mathrm{gK}$. Also, the enthalpy of vaporization of water is $40.6 \mathrm{~kJ} / \mathrm{mol}$.
A) 0.00 g
B) 2.24 g
C) 40.4 g
D) 72.6 g
E) 101 g
26. For the phosphorus halides, one can start with a molecule such as PCl_{5} and sequentially replace each chlorine with a fluorine to eventually produce PF_{5}. How many of the 6 compounds possible compounds are polar? ($\mathrm{PCl}_{5}, \mathrm{PCl}_{4} \mathrm{~F}, \mathrm{PCl}_{3} \mathrm{~F}_{2}, \ldots$ etc) (Note that the predicted VSEPR shapes are correct in each case.)
A) 1
B) 2
C) 3
D) 4
E) 5
27. A lab technician adds 0.20 mol of NaF to 1.00 L of 0.35 M cadmium nitrate, $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}$. Which of the following statements is correct? $\mathrm{Ksp}=6.44 \times 10^{-3}$ for CdF_{2}
A) Cadmium fluoride precipitates until the solution is saturated.
B) The solution is unsaturated and no precipitate forms.
C) The solubility of cadmium fluoride is increased by the presence of additional fluoride ions.
D) One must know Ksp for cadmium nitrate to make meaningful predictions on this system.
E) NaNO_{3} will precipitate out of solution.
28. A $0.622-\mathrm{g}$ sample of a metal oxide with the formula $\mathrm{M}_{2} \mathrm{O}_{3}$ is converted to 0.685 g of the metal sulfide MS. What metal must M be?
A) Al
B) Li
C) Zn
D) Mn
E) Ca
29. The volume of the bulb on the right is 2.00 L and has a pressure of 1.00 atm when the valve is closed. The volume of the bulb on the left is 3.00 L and has a pressure of 1.50 atm when the valve is closed. What is the final pressure in the apparatus when the valve between them is opened and the gases can completely mix?

A) 0.900 atm
B) 1.25 atm
C) 1.30 atm
D) 2.25 atm
E) 2.50 atm
30. What volume of ammonia gas $\left(\mathrm{NH}_{3}\right)$ has the same number of ATOMS as 10.0 L of neon (Ne) at the same temperature and pressure?
A) 1.67 L
B) 2.50 L
C) 3.33 L
D) 7.50 L
E) 10.0 L
31. Rank the following atoms/ions by increasing ionization energy: $\mathrm{Be}, \mathrm{B}, \mathrm{B}, \mathrm{N}, \mathrm{N}^{+}, \mathrm{O}$
A) $\mathrm{O}<\mathrm{N}^{+}<\mathrm{N}<\mathrm{B}<\mathrm{B}^{-}<\mathrm{Be}$
B) $\mathrm{Be}<$ B $^{-}<$B $<$O $<$N $<$N $^{+}$
C) $\mathrm{B}^{-}<\mathrm{B}<\mathrm{Be}<\mathrm{N}<\mathrm{N}^{+}<\mathrm{O}$
D) $\mathrm{Be}<\mathrm{B}^{-}<\mathrm{B}<\mathrm{N}<$ N $^{+}<\mathrm{O}$
E) B $^{-}<$B $<\mathrm{Be}<\mathrm{O}<\mathrm{N}<\mathrm{N}^{+}$
32. The normal boiling point for ammonia is $-33^{\circ} \mathrm{C}$. For the condensation reaction below, what would the signs of $\Delta \mathrm{G}, \Delta \mathrm{H}$, and $\Delta \mathrm{S}$ be at $-40^{\circ} \mathrm{C}$?

$\mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{I})$			
	$\Delta \mathrm{G}$	$\Delta \mathrm{H}$	$\Delta \mathrm{S}$
A$)$	-	-	-
B$)$	-	+	+
C$)$	+	+	+
D$)$	0	+	-
E$)$	+	-	-

33. Consider the decomposition reaction of carbon tetrachloride at $700^{\circ} \mathrm{C}$ below. Which of the following statements concerning this reaction is true?

$$
\mathrm{CCl}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{C}(\mathrm{~s})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{K}=1.0 \times 10^{-4}
$$

A) $K_{p}=K_{c}$ for this reaction.
B) As long as some C (s) is present, the value of K does not depend on how much is present.
C) If solid carbon and gaseous chlorine are added to a reaction vessel, equilibrium cannot be reached since there is no reactant at the start.
D) Since $\mathrm{K} \ll 1$, at equilibrium the rate of the reverse reaction will be much greater than the rate of the forward reaction.
E) If 2.0 moles of CCl_{4} are allowed to decompose at $700^{\circ} \mathrm{C}$, the value of K will be 2.0×10^{-4}.
34. Vanadium forms several different ions. In the electrolysis of a solution of a vanadium salt, 2.00 moles of electrons plate out 25.5 g of vanadium. What ion is in the solution of this salt?
A) VO^{2+}
B) V^{3+}
C) V^{2+}
D) $\mathrm{VO}_{2}{ }^{+}$
E) V^{3-}
35. In aqueous solution, iodine reacts with acetone in a reaction that is catalyzed with acid as shown below. The experimental rate law shows that the reaction is $1^{\text {st }}$ order in $\left[\mathrm{H}^{+}\right]$. If the pH of the reaction is reduced from $\mathrm{pH}=6$ to $\mathrm{pH}=3$, what affect will this have on the rate?

$$
\mathrm{I}_{2}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq}) \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{I}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq})
$$

A) the rate will increase by a factor of 2
B) the rate will decrease by a factor of 2
C) the rate will increase by a factor of 3
D) the rate will decrease by a factor of 3
E) the rate will increase by a factor of 1000
36. Which molecular substance will have the lowest normal boiling point? The vapor pressures given are at $25^{\circ} \mathrm{C}$. If the vapor pressure is not given, then consider the substance nonvolatile.
A) $\mathrm{C}_{7} \mathrm{H}_{16}(44 \mathrm{mmHg})$
B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}(534 \mathrm{mmHg})$
C) $\mathrm{CH}_{3} \mathrm{COOH}(11 \mathrm{mmHg})$
D) KBr
E) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
37. Which solute will dissolve in water to give the greatest boiling point at a 0.2 M concentration? The vapor pressures given are at $25^{\circ} \mathrm{C}$. If the vapor pressure is not given, then consider the substance non-volatile.
A) $\mathrm{C}_{7} \mathrm{H}_{16}(44 \mathrm{mmHg})$
B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}(534 \mathrm{mmHg})$
C) $\mathrm{CH}_{3} \mathrm{COOH}(11 \mathrm{mmHg})$
D) KBr
E) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
38. What is the relationship between the 2 molecules below?

A) They are different molecules.
B) They are structural isomers.
C) They are cis-trans isomers.
D) They have the same empirical formula.
E) The are conformers.
39. What do the following molecules have in common?
$\begin{array}{lllll}\mathrm{SiH}_{4} & \mathrm{XeF}_{2} & \mathrm{PBr}_{5} & \mathrm{CS}_{2} & \mathrm{BH}_{3}\end{array}$
A) All have at least one 120° bond angle.
B) All have a tetrahedral shape.
C) All have atoms that follow the octet rule and the duet rule for hydrogen
D) All are exceptions to the octet rule.
E) All are nonpolar.
40. How many moles of sulfate ions are there in a 0.20 L solution of 0.030 M aluminum sulfate?
A) 0.0030 moles
B) 0.0060 moles
C) 0.012 moles
D) 0.018 moles
E) 0.024 moles

