1. E. N^{3-} and P^{3-} contain different numbers of protons AND different numbers of electrons.
2. B. X and Z have the same number of protons, but different mass numbers, indicating a different number of neutrons.
3. E.

$$
\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} / \mathrm{T}_{2}
$$

$(0.105 \mathrm{~atm})(2.00 \mathrm{~L}) / 253 \mathrm{~K}=\mathrm{P}_{2}(4.50 \mathrm{~L}) / 330 \mathrm{~K}$
$\mathrm{P}_{2}=0.0609 \mathrm{~atm}$
4. C. The answer is C.
5. C. $\left(13.6 \mathrm{~g} / \mathrm{cm}^{3}\right)(1 \mathrm{~kg} / 1000 \mathrm{~g})(2.2 \mathrm{lb} / 1 \mathrm{~kg})(2.54 \mathrm{~cm} / 1.0 \mathrm{in})^{3}=0.4903 \mathrm{lb} / \mathrm{in}^{3}$
6. D. The process is condensation - exothermic.
7. E. $\mathrm{C}_{2}{ }^{2-}$ is the only one with a triple bond in its Lewis structure.

8. B. This option yields the correct balance of protons and mass number.
9. D. Only options I. and III. are physical changes.
10. B. The answer is B.
11. B. The answer is B.
12. E. Atomic masses are smallest at the top, right hand corner of the periodic table.
13. B. The least precise instrument limits the precision of the overall measurement, but then you are able to report an additional decimal place.
14. D. The answer is D.
15. A. Only option III is true.
16. E. $\quad 107.1 \mathrm{MHz}\left[1 \mathrm{x} 10^{6} \mathrm{~Hz} / 1 \mathrm{MHz}\right]=1.071 \mathrm{x} 10^{8} \mathrm{~Hz}\left(\mathrm{or} \mathrm{s}^{-1}\right)$

$$
\begin{aligned}
& \mathrm{c}=\lambda \bullet \mathrm{v} \\
& 2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}=\lambda \bullet 1.071 \times 10^{8} \mathrm{~Hz} \\
& \lambda=2.799 \mathrm{~m}
\end{aligned}
$$

17. D. Assume you have 1.00 mol of D to start. This yields 0.48 mol of E . $\%$ yield overall $=(0.48 \mathrm{~mol})(0.73)=0.35 \mathrm{~mol} \mathrm{~F}$
18. C. The answer is C.
19. D. $\mathrm{mol} \mathrm{O}_{2}=7.05 \mathrm{~g} \mathrm{KClO}_{3}\left[1 \mathrm{~mol} \mathrm{KClO}_{3} / 122.5 \mathrm{~g} \mathrm{KClO}_{3}\right]\left[3 \mathrm{~mol} \mathrm{O}_{2} / 2 \mathrm{~mol} \mathrm{KClO}_{3}\right]$ $=0.0863 \mathrm{~mol}$
20. B. mol of $\mathrm{Li}=1.62 \mathrm{~g} \mathrm{Li}[1 \mathrm{~mol} \mathrm{Li} / 6.941 \mathrm{~g} \mathrm{Li}]=0.233 \mathrm{~mol} \mathrm{Li}$ mol of $\mathrm{O}_{2}=6.00 \mathrm{~g} \mathrm{O}_{2}\left[1 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2} / 32.0 \mathrm{~g} \mathrm{O}_{2}\right]=0.1875 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}$ $0.233 \mathrm{~mol} \mathrm{Li}(1 \mathrm{~mol} \mathrm{O} 2 / 4 \mathrm{~mol} \mathrm{Li})=0.0585 \mathrm{~mol} \mathrm{O}_{2}$ needed. 0.01875 is present therefore Li is the limiting reagent.

Mass $\mathrm{Li}_{2} \mathrm{O}=0.233 \mathrm{~mol} \mathrm{Li}[2 \mathrm{~mol} \mathrm{Li} 2 \mathrm{O} / 4 \mathrm{~mol} \mathrm{Li}]\left[29.88 \mathrm{~g} \mathrm{Li}_{2} \mathrm{O} / 1 \mathrm{~mol} \mathrm{Li} 2 \mathrm{O}\right]$ $=3.5 \mathrm{~g}$
21. C. The answer is C, according the Le Chatelier principle. A higher temperature will shift the equilibrium in the direction of the endothermic reaction. A low pressure will favor the side of the equilibrium with more particles in the gas phase.
22. D. $1000 . \mathrm{mL}(1.0$ quart $/ 0.95 \mathrm{~L})=1052 \mathrm{~mL}$ so a small amount (5.2%) of the tea spills
23. A. The answer is A.
24. E. All the other options are true statements, but they describe other gas laws.
25. D. $(453.25 \mathrm{~g} \mathrm{Al})(1 \mathrm{~mol} \mathrm{Al} / 26.9815 \mathrm{~g})(5$ mole products $/ 2 \mathrm{~mol} \mathrm{Al})=41.996 \mathrm{~mol}$
26. A. All acids listed have the same molarities, so the one with the lowest $\mathrm{p} \mathrm{K}_{\mathrm{a}}$ value will have the highest concentration of H^{+}in solution at equilibrium and therefore the lowest pH.
27. B. $(0.300 \mathrm{~L} \mathrm{NaOH})(0.10 \mathrm{~mol} \mathrm{NaOH} / \mathrm{L})=0.03 \mathrm{~mol} \mathrm{NaOH}$
$(0.300 \mathrm{~L} \mathrm{HCl})(0.15 \mathrm{~mol} \mathrm{HCl} / \mathrm{L})=0.045 \mathrm{~mol} \mathrm{HCl}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$leftover $=(0.045-0.03) / 0.600 \mathrm{~L}=0.025 \mathrm{M}$
28. E. $\mathrm{M} \mathrm{NaOH}=[50.0 \mathrm{~g} / 40.997 \mathrm{~g} / \mathrm{mol}] / 0.750 \mathrm{~L}=1.67 \mathrm{M}$
29. A. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KBr}(\mathrm{aq}) \rightarrow \mathrm{PbBr}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
30. B. The answer is B.
31. A. H_{2} has the lowest molecular weight and therefore will contain the most particles in 10.0 g. According to Avogadro's Law, the volume is proportional to the number of particles at constant pressure and temperature.
32. C. Volume and moles are constant.

$$
\begin{aligned}
& \mathrm{P}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} / \mathrm{T}_{2} \\
& 1.5 \mathrm{~atm} / 298 \mathrm{~K}=\mathrm{P}_{2} / 373 \mathrm{~K} \\
& \mathrm{P}_{2}=1.88 \mathrm{~atm}
\end{aligned}
$$

33. D. Atoms with the largest, most negative electron affinities are at the top right corner of the periodic table.
34. B. The answer is B.
35. D. $2 \mathrm{H}_{2} \mathrm{O}+\mathrm{U}^{3+} \rightarrow \mathrm{UO}_{2}^{2+}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-}$
36. D. ${ }^{1} \mathrm{H}^{35} \mathrm{Cl},{ }^{1} \mathrm{H}^{37} \mathrm{Cl},{ }^{2} \mathrm{H}^{35} \mathrm{Cl},{ }^{2} \mathrm{H}^{37} \mathrm{Cl},{ }^{3} \mathrm{H}^{35} \mathrm{Cl},{ }^{3} \mathrm{H}^{37} \mathrm{Cl}$ for 6 possible isotopes
37.

C. A. 40.0%
B. 52.1%
C. 79.9\%
D. 37.4%
E. 26.0%
38. B. Use the integrated first-order rate law.
$\ln \mathrm{A}=\ln \mathrm{A}_{0}-\mathrm{kt}$
$\ln 55=\ln 100-\mathrm{k}(33 \mathrm{~min}$.
$\mathrm{k}=0.0181 \mathrm{~min}^{-1}$
$\mathrm{t}_{1 / 2}=\ln 2 / \mathrm{k}$
$\mathrm{t}_{1 / 2}=38 \mathrm{~min}$.
39. A.

40. D. The answer is D.

