2013 Academic Challenge

CHEMISTRY TEST - STATE FINAL

This Test Consists of 40 Questions

Chemistry Test Production Team
Doug Mulford, Emory University - Author/Team Leader
Tracy Morkin, Emory University - Author
Nancy Carter Dopke, Alma College - Reviewer
Mary Weaver, WYSE - Coordinator of Test Production

GENERAL DIRECTIONS

Please read the following instructions carefully. This is a timed test; any instructions from the test supervisor should be followed promptly.

The test supervisor will give instructions for filling in any necessary information on the answer sheet. Most Academic Challenge sites will ask you to indicate your answer to each question by marking an oval that corresponds to the correct answer for that question. Only one oval should be marked to answer each question. Multiple ovals will automatically be graded as incorrect answers.

Be sure ovals are marked as \bigcirc, not $\bullet, \bigoplus, \bigcirc$, etc.

If you wish to change an answer, erase your first mark completely before marking your new choicE)
You are advised to use your time effectively and to work as rapidly as you can without losing accuracy. Do not waste your time on questions that seem too difficult for you. Go on to the other questions, and then come back to the difficult ones later if time remains.
*** TIME: 40 MINUTES

DO NOT OPEN TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO!

© 2013 Worldwide Youth in Science and Engineering
"WYSE", "Worldwide Youth in Science and Engineering" and the "WYSE Design" are service marks of and this work is the Copyright © 2013 of the Board of Trustees of the University of Illinois at Urbana - Champaign. All rights reserved.

Potentially Useful Information

```
\(\mathrm{q}=\mathrm{m} \bullet \mathrm{C}_{\mathrm{s}} \bullet \Delta \mathrm{T}\)
\(\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} K_{\mathrm{b}} \bullet \mathrm{m}\)
\(\mathrm{P}_{\text {solvent }}=\mathrm{C}_{\text {solvent }} \bullet \mathrm{P}^{\circ}{ }_{\text {solvent }}\)
\(\ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t\)
\([A]_{t}-[A]_{0}=-k t\)
\(\ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{-\Delta H_{r x n}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)\)
\(\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\)
\(\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}=\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[H A]}\right)\)
\(\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}\)
\(\Delta E=B\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{f i}^{2}}\right)\)
\(\Delta G^{\circ}=n F \varepsilon^{\circ}\)
\(\mathrm{F}=96485 \mathrm{C} / \mathrm{mol}\)
\(\mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K} ; 8.3145 \mathrm{~J} / \mathrm{mol} \mathrm{K}\)
\(1.0 \mathrm{~kg}=2.2 \mathrm{lb}\)
\(1.0 \mathrm{in}=2.54 \mathrm{~cm}\)
\(1 \mathrm{lb}=453.59 \mathrm{~g}\)
\(\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\)
\(\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\)
```

$\Delta \mathrm{T}_{\mathrm{f}}=-\mathrm{i} K_{\mathrm{f}} \bullet \mathrm{m}$
$S_{\text {gas }}=\mathrm{k}_{\mathrm{H}} \bullet \mathrm{P}_{\text {gas }}$
$k=A e^{-E a / R T}$
$\frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}=k t$
$\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{-E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\ln \left(\frac{P_{2}}{P_{1}}\right)=\frac{-\Delta H_{\text {vap }}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$\Delta \mathrm{S}_{\text {surr }}=\frac{-\Delta H_{\text {sys }}}{T}$
$\mathrm{E}_{\text {cell }}{ }^{\circ}=\mathrm{E}_{\text {red }}{ }^{\circ}+\mathrm{E}_{\mathrm{ox}}{ }^{\circ}$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$
$B=-2.18 \times 10^{-18} \mathrm{~J}$
$N_{A}=6.022 \times 10^{23}$
$1 \mathrm{~atm}=101,325 \mathrm{~Pa}=1.01325 \mathrm{bar}$
$1 \mathrm{~J}=1 \mathrm{~N} \mathrm{~m}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}=0.239 \mathrm{cal}$
$c=\lambda \nu$

Assume all gases behave ideally unless specifically told to do otherwise Assume all solutions are aqueous and at $25^{\circ} \mathrm{C}$ unless specifically told otherwise Assume all gases are at STP unless specifically told otherwise

Simple Rules for the Solubility of Salts in Water

1. Most nitrates are soluble
2. Most salts containing Group 1 ions or ammonium $\left(\mathrm{NH}_{4}^{+}\right)$are soluble
3. Most chloride, bromide, and iodide salts are soluble except those of $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}$, and $\mathrm{Hg}_{2}{ }^{2+}$.
4. Most sulfates are soluble with the exception of $\mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Hg}_{2}{ }^{2+}$, and Ca^{2+}
5. Most hydroxide salts are only slightly soluble with the exception of Group 1 hydroxides. Group $2\left(\mathrm{Ba}^{2+}\right.$ to $\left.\mathrm{Ca}^{2+}\right)$ are slightly soluble.
6. Most sulfides, carbonates, chromates, and phosphates are only slightly soluble.

> WYSE - Academic Challenge
> Chemistry Test (State Final) - 2013

1. An atom of element number 33 (As) is in its ground electronic state. Which one of the following sets of quantum numbers could not apply to any of its electrons?
A. $n=2 ; I=1 ; m_{l}=-1, m_{s}=+1 / 2$
B. $n=3 ; l=0 ; m_{l}=0, m_{s}=-1 / 2$
C. $n=3 ; l=2 ; m_{l}=2, m_{s}=+1 / 2$
D. $n=4 ; l=0 ; m_{l}=0, m_{s}=-1 / 2$
E. $n=4 ; I=2 ; m_{l}=-2, m_{s}=+1 / 2$
2. Which one of the following has a Lewis structure most like that of NO^{+}?
A. $\mathrm{NO}_{2}{ }^{+}$
B. $\mathrm{O}_{2}{ }^{2-}$
C. $\mathrm{O}_{2}{ }^{2+}$
D. NO
E. NO^{-}
3. A reaction occurs between sodium carbonate and hydrochloric acid producing sodium chloride, carbon dioxide, and water. The correct set of coefficients, respectively, for the balanced reaction is:
A. 36634
B. 865105
C. $5 \quad 10 \quad 10 \quad 5 \quad 5$
D. 12211
E. none of these
4. Phosphorus has the molecular formula P_{4}, and sulfur has the molecular formula S_{8}. How many grams of phosphorus contain the same number of atoms as 2.97 g of sulfur?
A. 1.43 g
B. 0.697 g
C. 2.87 g
D. 2.97 g
E. None of these
5. Which of the following will be a buffer when dissolved in 1.0 L of water?
A. 0.2 mol HCl and 0.1 mol NaOH
B. 0.2 mol HBr and 0.1 mol NaOH
C. 0.2 mol HCl and $0.4 \mathrm{~mol} \mathrm{NH}_{3}$
D. 0.3 mol HCl and 0.3 mol KCl
E. $0.2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.4 mol NaOH
6. Antimony (Latin stibium) was one of the elements known to the alchemists. Two antimony isotopes occur naturally: ${ }^{121} \mathrm{Sb}$ (isotopic mass 120.904 amu) and ${ }^{123} \mathrm{Sb}$ (isotopic mass 122.904 amu). If the atomic mass of antimony is 121.76 amu , what is the natural abundance of ${ }^{121} \mathrm{Sb}$?
A. 25.0%
B. 42.8%
C. 50.0%
D. 57.2%
E. None of these
7. The decomposition of lead(II) nitrate produces $\mathrm{PbO}, \mathrm{NO}_{2}$ and O_{2} with a 71.5% yield. If you need to produce 12.45 g of NO_{2}, how much lead(II) nitrate must you start with?
A. 32.1 g
B. 44.8 g
C. 62.7 g
D. 89.6 g
E. 125 g
8. Which of the following statements is true about the ionization energy of Mg^{+}?
A. It will be equal to the ionization energy of Li.
B. It will be equal to and opposite in sign to the electron affinity of Mg .
C. It will be equal to and opposite in sign to the electron affinity of Mg^{+}.
D. It will be equal to and opposite in sign to the electron affinity of Mg^{2+}.
E. None of the above.
9. If a solution is 0.010 M with respect to Mg^{2+}, what is the maximum hydroxide concentration that would be present without causing the precipitation of $\mathrm{Mg}(\mathrm{OH})_{2}$?
$\left(\mathrm{K}_{\mathrm{sp}} \mathrm{Mg}(\mathrm{OH})_{2}=1.2 \times 10^{-11}\right)$
A. $1.2 \times 10^{-9} \mathrm{M}$
B. $1.8 \times 10^{-5} \mathrm{M}$
C. $3.5 \times 10^{-6} \mathrm{M}$
D. $3.5 \times 10^{-5} \mathrm{M}$
E. $1.4 \times 10^{-4} \mathrm{M}$
10. A particular metal in a photoelectric cell has a threshold energy that corresponds to a photon of 500 nm . Which of the following statements is incorrect?
A. If the metal is irradiated with 600 nm light, no electrons will be ejected.
B. If the metal is irradiated with 250 nm light, twice as many electrons will be ejected than if it was irradiated with 500 nm light.
C. If the metal is irradiated with 450 nm light, the ejected electrons will have a greater kinetic energy than if the metal was irradiated with 500 nm light.
D. If the metal is irradiated with 500 nm light with an increased intensity, more electrons will be ejected.
E. If the metal is irradiated with 10 photons of 500 nm light then 10 electrons will be ejected.
11. You have 30.8 g of O_{2} gas in flask A . Flask A is twice the volume of Flask B , which contains CO_{2} gas. The pressure and temperature of both containers are the same. Calculate the mass of carbon dioxide in Flask B.
A. 0.481 g
B. 1.93 g
C. 21.2 g
D. 42.4 g
E. none of the above
12. The rate constant for the reaction shown below is $8.0 \mathrm{M}^{-3} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$. The reaction is first order in $\mathrm{BrO}_{3}{ }^{-}$and first order in Br^{-}. What is the order with respect to H^{+}?

$$
\mathrm{BrO}_{3}^{-}(\mathrm{aq})+5 \mathrm{Br}-(\mathrm{aq})+6 \mathrm{H}^{+} \rightleftarrows 3 \mathrm{Br}_{2}(\mathrm{I})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

A. 1st order
B. 2nd order
C. 3rd order
D. 4th order
E. 5th order
13. Which compound would be expected to be the least soluble in water?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~F}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
E. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NHCH}_{3}$
14. Which of the following statements is true?
A. The Kr 1 s orbital is smaller than the He 1s orbital because Kr's p and d orbitals crowd the s orbitals.
B. The Kr 1 s orbital is larger than the He 1s orbital because Kr contains more electrons.
C. The Kr 1 s orbital is smaller than the He 1s orbital because Kr's nuclear charge draws the electrons closer.
D. The Kr 1 s orbital and the He 1 s orbital are the same size because they are both s orbitals in the $\mathrm{n}=1$ shell.
E. The Kr 1 s orbital is larger than the He 1s orbital because Kr^{\prime} 's ionization energy is lower so it is easier to remove electrons.
15. What is the ratio of A to B in the following equation if 43.7 mL of $0.731 \mathrm{M} A$ requires 25.8 mL of 0.412 MB to be titrated completely?

$$
\ldots \mathrm{A}+\ldots \mathrm{B} \rightarrow \mathrm{C}
$$

A. $1: 1$
B. $2: 3$
C. $3: 1$
D. $1: 3$
E. $3: 3$
16. A saturated solution of PbBr_{2} is prepared by dissolving the solid salt in water. The concentration of Br^{-}in the solution is found to be 0.023 M . What is the Ksp for PbBr_{2} ?
A. 6.1×10^{-6}
B. 1.2×10^{-5}
C. 4.9×10^{-5}
D. 2.6×10^{-4}
E. 2.3×10^{-2}
17. Using the following data, calculate the heat of reaction for the coal gasification process:

$$
\begin{array}{ll}
2 \mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) & \\
\mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=131.3 \mathrm{~kJ} \\
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-41.2 \mathrm{~kJ} \\
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=206.1 \mathrm{~kJ}
\end{array}
$$

A. -378.6 kJ
B. -157.2 kJ
C. -116.0 kJ
D. 15.3 kJ
E. 378.6 kJ
18. Nitrogen dioxide can dissociate to nitric oxide and oxygen.

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ} \mathrm{rxn}=+114 \mathrm{~kJ}
$$

Under which reaction conditions would you expect to produce the largest amount of oxygen?
A. high temperature, high pressure
B. low temperature, high pressure
C. high temperature, low pressure
D. low temperature, low pressure
E. You need to know the equilibrium constant to make the prediction
19. A 1.35 m aqueous solution of compound X had a boiling point of $101.4^{\circ} \mathrm{C}$. Which one of the following could be compound X ? The boiling point elevation constant for water is $0.52^{\circ} \mathrm{C} / \mathrm{m}$.
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
B. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
C. $\mathrm{Na}_{3} \mathrm{PO}_{4}$
D. KCl
E. CaCl_{2}
20. What is the atomic weight of an element if 4.00 grams of it contains 2.98×10^{22} atoms?
A. 20.2 u
B. 80.8 u
C. 19.7 u
D. 8.08 u
E. None of these
21. Calculate the vapor pressure of a solution made by dissolving 109 grams of glucose $($ molar mass $=180.2 \mathrm{~g} / \mathrm{mol})$ in 920.0 ml of water at $25^{\circ} \mathrm{C}$. The vapor pressure of pure water at $25^{\circ} \mathrm{C}$ is 23.76 mm Hg . Assume the density of the solution is $1.00 \mathrm{~g} / \mathrm{ml}$.
A. 0.278 mm Hg
B. 0.605 mm Hg
C. 23.0 mm Hg
D. 23.5 mm Hg
E. 23.8 mm Hg
22. You have equal masses of different solutes in equal volumes of solution. Which of the solutes would make the solution having the highest molar concentration?
A. NaOH
B. KCl
C. KOH
D. LiOH
E. All would be the same
23. A 70.28-g sample of $\mathrm{Ba}(\mathrm{OH})_{2}$ is dissolved in enough water to make 2.300 L of solution. How many mL of this solution must be diluted with water in order to make 1.000 L of 0.100 M $\mathrm{Ba}(\mathrm{OH})_{2}$?
A. 561 mL
B. 244 mL
C. 178 mL
D. 17.8 mL
E. 4.10 mL
24. The rate constant for a reaction at $40^{\circ} \mathrm{C}$ is exactly 3 times that at $20^{\circ} \mathrm{C}$. What is the activation energy for the reaction?
A. $9.13 \mathrm{~kJ} / \mathrm{mol}$
B. $5.04 \mathrm{~kJ} / \mathrm{mol}$
C. $41.9 \mathrm{~kJ} / \mathrm{mol}$
D. $3.00 \mathrm{~kJ} / \mathrm{mol}$
E. none of these
25. What is the best estimate of the $\left[\mathrm{Cl}^{-}\right]$ion concentration when 50.0 mL of $0.100 \mathrm{M} \mathrm{CaCl}_{2}$ and $1.00 \mathrm{~g} \mathrm{AgCl}(\mathrm{s})$ are mixed?
A. 0.00500 M
B. 0.0500 M
C. 0.200 M
D. 0.339 M
E. 0.450 M
26. Compare a liter of carbon dioxide to a liter of hydrogen gas, with both gases at $25^{\circ} \mathrm{C}$ and 2 atm . Which statement is correct?
A. The CO_{2} and H_{2} molecules have the same total mass.
B. There are more molecules of H_{2} than CO_{2} present.
C. The CO_{2} and H_{2} molecules hit the walls of the containers with the same frequency.
D. The CO_{2} molecules are on the average moving slower than the H_{2} molecules.
E. The average kinetic energy of the CO_{2} molecules is greater than that of the H_{2} molecules.
27. Which of the following molecules is paramagnetic?
A. Sc^{3+}
B. Mn^{2+}
C. Zn
D. Zn^{2+}
E. Al^{3+}
28. Give the IUPAC name for the following compound:
A. 1-chloro-2-methylcyclohexane
B. 1-methyl-2-chlorocyclohexane
C. 1-chloro-5-methylcyclohexane

D. 1-methyl-5-chlorocyclohexane
E. 1,2-chloromethylcyclohexane
29. For a process with $\Delta \mathrm{S}<0 \mathrm{~J} / \mathrm{K} \mathrm{mol}$, which of the following statements is correct?
A. The process will be spontaneous if $\Delta \mathrm{H}<0 \mathrm{~kJ}$.
B. The process will be spontaneous if $\Delta \mathrm{H}<\mathrm{T} \Delta \mathrm{S}$.
C. The process can never be spontaneous.
D. The process will be spontaneous, regardless of $\Delta \mathrm{H}$.

E . The process will be spontaneous as long as $\Delta \mathrm{S}_{\text {surr }}>0 \mathrm{~J} / \mathrm{K} \mathrm{mol}$.
30. What is the molecular shape of $\mathrm{ClF}_{2}{ }^{+}$?
A. Linear
B. B. trigonal planar
C. C. tetrahedral
D. D. bent
E. E. none of these
31. Which of the following are evidence for a chemical change?
I. Formation of a new compound
II. Evaporation of a liquid
III. Change of odor
IV. Color change
V. Melting
A. I, II, IV, V
B. II, V
C. I, III, IV
D. I, II
E. All of the above
32. A molecule contains 76.34% carbon, 6.41% hydrogen, and 17.25% fluorine. Each molecule contains one fluorine atom. What is the total number of carbon, hydrogen, and fluorine atoms in one molecule?
A. 8
B. 12
C. 13
D. 14
E. 15

USE THE STANDARD POTENTIALS BELOW FOR THE QUESTIONS 33 AND 34.
$\begin{array}{ll}\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu} & \mathrm{E}^{\circ}=0.339 \mathrm{~V} \\ \mathrm{~Pb}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb} & \mathrm{E}^{\circ}=-0.130 \mathrm{~V} \\ \mathrm{Ni}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni} & \mathrm{E}^{\circ}=-0.250 \mathrm{~V}\end{array}$
33. For a voltaic cell employing the Cu and Pb half-reactions with $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, respectively, calculate the maximum amount of work that would accompany the reaction of one mole of lead under standard conditions.
A. -40.3 kJ
B. -45.3 kJ
C. -90.5 kJ
D. No work can be done. The system is at equilibrium.
E. None of the above.
34. Which of the following metals would dissolve in stomach acid?
A. Cu, Pb, and Ni
B. Pb and Ni
C. Cu
D. Cu and Pb
E. None
35. Sulfuric acid may be produced by the following process:

$$
\begin{gathered}
4 \mathrm{FeS}_{2}+11 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{SO}_{2} \\
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3} \\
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}
\end{gathered}
$$

How many moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ will be produced from 5.62 moles of FeS_{2} assuming each step is 100% efficient?
A. 1.40 mol
B. 2.81 mol
C. 5.62 mol
D. 11.2 mol
E. 30.9 mol
36. The base dissociation constant, K_{b}, equals 7.9×10^{-13} for $\mathrm{SO}_{4}{ }^{2-}$ and the K_{a} is 1.78×10^{-5} for $\mathrm{NH}_{4}{ }^{+}$. Which statement about the following equilibrium is correct?

$$
\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightleftarrows \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{NH}_{4}^{+}(\mathrm{aq})
$$

A. The initial concentrations of the hydrogen sulfate ion and ammonia must be known before any prediction can be made.
B. The reactants will be favored because ammonia is a stronger base than the sulfate anion.
C. Neither reactants or products will be favored because all of the species are weak acids or bases.
D. The products will be favored because the hydrogen sulfate ion is a stronger acid than the ammonium ion.
E. Once equilibrium is established the pH will be neutral.
37. Silver crystallizes in a face-centered cubic system. If the edge of the unit cell is 407 pm , what is the radius of a silver atom?
A. 144 pm
B. 176 pm
C. 204 pm
D. 288 pm
E. 352 pm
38. ${ }^{64} \mathrm{Co}$ decays by a first-order process via the emission of a beta particle. The ${ }^{64} \mathrm{Co}$ isotope has a half-life of 7.8 min . How long will it take for $31 / 32$ of the cobalt to undergo decay?
A. 7.8 min .
B. 16 min .
C. 23 min .
D. 31 min .
E. 39 min .
39. Which of the following have atoms that do not all lie in the same plane?
A. $\mathrm{C}_{2} \mathrm{H}_{4}$
B. $\mathrm{N}_{2} \mathrm{~F}_{4}$
C. COCl_{2}
D. $\mathrm{H}_{2} \mathrm{CCCH}_{2}$
E. There is more than one of A-D with atoms that do not lie in the same plane.
40. Consider the Lewis structure $\mathrm{CH}_{3} \mathrm{CHNH}$. What orbital is the lone pair on nitrogen located in?
A. s
B. p
C. sp
D. $s p^{2}$
E. $s p^{3}$

