

2013 Academic Challenge

CHEMISTRY TEST - STATE FINAL

This Test Consists of 40 Questions

Chemistry Test Production Team

Doug Mulford, Emory University – Author/Team Leader Tracy Morkin, Emory University – Author Nancy Carter Dopke, Alma College – Reviewer Mary Weaver, WYSE – Coordinator of Test Production

GENERAL DIRECTIONS

Please read the following instructions carefully. This is a timed test; any instructions from the test supervisor should be followed promptly.

The test supervisor will give instructions for filling in any necessary information on the answer sheet. Most Academic Challenge sites will ask you to indicate your answer to each question by marking an oval that corresponds to the correct answer for that question. Only one oval should be marked to answer each question. Multiple ovals will automatically be graded as incorrect answers.

Be sure ovals are marked as \bullet , not \bullet , \bigcirc , etc.

If you wish to change an answer, erase your first mark completely before marking your new choicE)

You are advised to use your time effectively and to work as rapidly as you can without losing accuracy. Do not waste your time on questions that seem too difficult for you. Go on to the other questions, and then come back to the difficult ones later if time remains.

*** TIME: 40 MINUTES ***

DO NOT OPEN TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO!

© 2013 Worldwide Youth in Science and Engineering "WYSE", "Worldwide Youth in Science and Engineering" and the "WYSE Design" are service marks of and this work is the Copyright © 2013 of the Board of Trustees of the University of Illinois at Urbana - Champaign. All rights reserved.

Periodic Table of the Elements

8 A	2 He 4.003	10	Ne	20.18	18	Ā	39.95	36	궃	83.80	54	Xe	131.3	98	Ru	(222)			
	47	6	ட	19.00	17	రె	35.45	35	ğ	79.90	53	_	126.9	85	At	(210)			
	6A	8	0	16.00	16	ഗ	32.07	34	Se	96.82	52	Це	127.6	84	9	(508)	•		
	5A	7	z	14.01	15	<u></u>	30.97	33	As	74.92	51	Sp	121.8	83	Ξ	209.0			
	4 A	9	ပ	12.01	14	SS	28.09	32	Ge	72.59	20	Sn	118.7	82	Pb	207.2			
	3A	2	В	10.81	13	₹	26.98	31	Ga	69.72	49	п	114.8	81	F	204.4			
	'							30	Zn	65.38	48	S	112.4	80	Нg	200.6			
								29	D.	63.55	47	Ag	107.9	6/	Au	197.0			
								28	z	58.69	46	Pd	106.4	78	₹	195.1			
								27	ပိ	58.93	45	R	102.9	22	<u>_</u>	192.2	109	Une	
								26	Fe	55.85	44	Ru	101.1	9/	ő	190.2	108	Ou	
								25	Mn	54.94	43	ည	(86)	75	Re	186.2	107	Uns	
								24	ပ်	52.00	42	Mo	95.94	74	≥	183.9	106	Unh	
								23	>	50.94	14	qN	92.91	23	Та	180.9	105	Unp	,
								22	F	47.88	40	Zr	91.22	72	士	178.5	104	Ond	
								21	လွ	44.96	39	>	88.91	22	Ľa*	138.9	68	Ac**	(227)
	2A	4	Be	9.012	12	Mg	24.31	20	Ca	40.08	38	ട്	87.62	26	Ba	137.3	88	Ra	226
1 A	1.008	3	:5	6.941	11	Na	22.99	19	エ	39.10	37	Rb	85.47	22	S	132.9	87	ь Б	(223)

	28	29	09	61	62		64	-	99	29	89	69	20	71
*Lanthanides	Ce	Ā	PZ	Pm	Sm	Вu	ලි	Q L	٥	운	Ē	Tm	Υp	Ρſ
	140.1	140.9	144.2	(145)	150.4		157.3		162.5	164.9	167.3	168.9	173.0	175.0
	06	91	76	93	94		96		86	66	100	101	102	103
**Actinides	ഥ	Ра	\supset	dN	Pu		CB		ర	Es	Fm	Md	%	۲
	232.0 (231)	(231)	238.0	(237)	(244)		(247)		(251)	(252)	(257)	(258)	(259)	(260)
	2021.0	(1)	2552	()	(5.1.1)	_	(117)	_	(501)]	_	_	(404)	(501) (-02)

Potentially Useful Information

$$q = m \cdot C_s \cdot \Delta T$$

$$\Delta T_b = i K_b \bullet m$$

$$P_{\text{solvent}} = C_{\text{solvent}} \bullet P^{\circ}_{\text{solvent}}$$

$$\ln\left(\frac{[A]_t}{[A]_0}\right) = -kt$$

$$[A]_t - [A]_0 = -kt$$

$$\ln\left(\frac{K_2}{K_1}\right) = \frac{-\Delta H_{rxn}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

$$pH = -log [H_3O^+]$$

$$pH = pK_a = log \left(\frac{[A^-]}{[HA]}\right)$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$\Delta E = B \left(\frac{1}{n_f^2} - \frac{1}{n_{fi}^2} \right)$$

$$\Delta G^{\circ} = nF \varepsilon^{\circ}$$

F = 96485 C/mol

R = 0.08206 L atm/mol K; 8.3145 J/mol K

$$1.0 \text{ kg} = 2.2 \text{ lb}$$

$$1.0 \text{ in} = 2.54 \text{ cm}$$

$$1 lb = 453.59 g$$

$$c = 2.998 \times 10^8 \text{ m/s}$$

$$\Delta T_f = -i K_f \bullet m$$

$$S_{gas} = k_H \bullet P_{gas}$$

$$k = Ae^{-Ea/RT}$$

$$\frac{1}{[A]_t} - \frac{1}{[A]_0} = kt$$

$$\ln\left(\frac{k_2}{k_1}\right) = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

$$\ln\left(\frac{P_2}{P_1}\right) = \frac{-\Delta H_{vap}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

$$pOH = -log[OH]$$

$$\Delta S_{\text{surr}} = \frac{-\Delta H_{Sys}}{T}$$

$$E_{cell}^{\circ} = E_{red}^{\circ} + E_{ox}^{\circ}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$K_w = 1.0 \times 10^{-14}$$

$$B = -2.18x10^{-18} J$$

$$N_A = 6.022 \times 10^{23}$$

$$1 J = 1 N m = 1 kg m^2 s^{-2} = 0.239 cal$$

$$c = \lambda v$$

Assume all gases behave ideally unless specifically told to do otherwise Assume all solutions are aqueous and at 25 °C unless specifically told otherwise Assume all gases are at STP unless specifically told otherwise

Simple Rules for the Solubility of Salts in Water

- 1. Most nitrates are soluble
- 2. Most salts containing Group 1 ions or ammonium (NH₄⁺) are soluble
- 3. Most chloride, bromide, and iodide salts are soluble except those of Ag^+ , Pb^{2+} , and Hq_2^{2+} .
- 4. Most sulfates are soluble with the exception of Ba²⁺, Pb²⁺, Hg₂²⁺, and Ca²⁺
- 5. Most hydroxide salts are only slightly soluble with the exception of Group 1 hydroxides. Group 2 (Ba²⁺ to Ca²⁺) are slightly soluble.
- 6. Most sulfides, carbonates, chromates, and phosphates are only slightly soluble.

WYSE – Academic Challenge Chemistry Test (State Final) – 2013

1.	An atom of element following sets of quality A. $n = 2$; $l = 1$; m_l B. $n = 3$; $l = 0$; m_l C. $n = 3$; $l = 2$; m_l D. $n = 4$; $l = 0$; m_l E. $n = 4$; $l = 2$; m_l	uantum numbers c = -1, $m_s = +\frac{1}{2}$ = 0, $m_s = -\frac{1}{2}$ = 2, $m_s = +\frac{1}{2}$ = 0, $m_s = -\frac{1}{2}$										
2.	Which one of the f	ollowing has a Lew	vis structure most l	ike that of NO ⁺ ?								
	A. NO ₂ ⁺	B. O ₂ ²⁻	C. O ₂ ²⁺	D. NO	E. NO							
3.	A reaction occurs chloride, carbon dibalanced reaction A. 3 6 6 3 4 B. 8 6 5 10 5 C. 5 10 10 5 D. 1 2 2 1 1 E. none of these	oxide, and water. ⁻ is:										
4.	Phosphorus has the many grams of phosphorus											
	A. 1.43 g	B. 0.697 g	C. 2.87 g	D. 2.97 g	E. None of these							
5.	Which of the following will be a buffer when dissolved in 1.0 L of water? A. 0.2 mol HCl and 0.1 mol NaOH											
	B. 0.2 mol HBr arC. 0.2 mol HCl anD. 0.3 mol HCl anE. 0.2 mol CH₃CC	d 0.4 mol NH ₃ d 0.3 mol KCl	laOH									
6.	Antimony (Latin st isotopes occur nat 122.904 amu). If t abundance of 121S	urally ^{: 121} Sb (isotor he atomic mass of	oic mass 120.904 a	amu) and ¹²³ Sb (is	otopic mass							
	A. 25.0%	B. 42.8%	C. 50.0%	D. 57.2%	E. None of these							
7.	The decomposition you need to produ	` ,	•	_	•							
	A. 32.1 a	B. 44.8 a	C. 62.7 a	D. 89.6 a	E. 125 a							

- Which of the following statements is true about the ionization energy of Mg⁺? 8.
 - A. It will be equal to the ionization energy of Li.
 - B. It will be equal to and opposite in sign to the electron affinity of Mg.
 - C. It will be equal to and opposite in sign to the electron affinity of Mg⁺.
 - D. It will be equal to and opposite in sign to the electron affinity of Mg²⁺.
 - E. None of the above.
- If a solution is 0.010 M with respect to Mg²⁺, what is the maximum hydroxide concentration that would be present without causing the precipitation of Mg(OH)₂? $(K_{sp} Mg(OH)_2 = 1.2x10^{-11})$
 - A. 1.2x10⁻⁹ M B. 1.8x10⁻⁵ M C. 3.5x10⁻⁶ M D. 3.5x10⁻⁵ M E. 1.4x10⁻⁴ M

- 10. A particular metal in a photoelectric cell has a threshold energy that corresponds to a photon of 500 nm. Which of the following statements is **incorrect**?
 - A. If the metal is irradiated with 600 nm light, no electrons will be ejected.
 - B. If the metal is irradiated with 250 nm light, twice as many electrons will be ejected than if it was irradiated with 500 nm light.
 - C. If the metal is irradiated with 450 nm light, the ejected electrons will have a greater kinetic energy than if the metal was irradiated with 500 nm light.
 - D. If the metal is irradiated with 500 nm light with an increased intensity, more electrons will be ejected.
 - E. If the metal is irradiated with 10 photons of 500 nm light then 10 electrons will be ejected.
- 11. You have 30.8 g of O₂ gas in flask A. Flask A is twice the volume of Flask B, which contains CO₂ gas. The pressure and temperature of both containers are the same. Calculate the mass of carbon dioxide in Flask B.
 - A. 0.481 a
- B. 1.93 a

- C. 21.2 g D. 42.4 g E. none of the above
- 12. The rate constant for the reaction shown below is 8.0 M⁻³ s⁻¹ at 25°C. The reaction is first order in BrO₃ and first order in Br. What is the order with respect to H⁺?

$$BrO_{3}^{-}(aq) + 5Br - (aq) + 6H^{+} \rightleftharpoons 3Br_{2}(I) + 3H_{2}O(I)$$

- A. 1st order
- B. 2nd order
- C. 3rd order
- D. 4th order
- E. 5th order
- 13. Which compound would be expected to be the least soluble in water?
 - A. CH₃CH₂CH₂F
 - B. CH₃CH₂CH₂NH₂
 - C. CH₃CH₂CH(OH)CH₃
 - D. CH₃CH₂COOH
 - E. CH₃CH₂NHCH₃

- 14. Which of the following statements is true?
 - A. The Kr 1s orbital is smaller than the He 1s orbital because Kr's p and d orbitals crowd the s orbitals.
 - B. The Kr 1s orbital is larger than the He 1s orbital because Kr contains more electrons.
 - C. The Kr 1s orbital is smaller than the He 1s orbital because Kr's nuclear charge draws the electrons closer.
 - D. The Kr 1s orbital and the He 1s orbital are the same size because they are both s orbitals in the n=1 shell.
 - E. The Kr 1s orbital is larger than the He 1s orbital because Kr's ionization energy is lower so it is easier to remove electrons.
- 15. What is the ratio of A to B in the following equation if 43.7 mL of 0.731 MA requires 25.8 mL of 0.412 MB to be titrated completely?

$$_A + _B \rightarrow C$$

A. 1:1

B. 2:3

C. 3:1 D. 1:3

E. 3:3

16. A saturated solution of PbBr₂ is prepared by dissolving the solid salt in water. The concentration of Br in the solution is found to be 0.023 M. What is the Ksp for PbBr₂?

A. 6.1x10⁻⁶

B. 1.2×10^{-5} C. 4.9×10^{-5} D. 2.6×10^{-4} E. 2.3×10^{-2}

17. Using the following data, calculate the heat of reaction for the coal gasification process:

$$2C(s) + 2H_2O(g) \rightarrow CH_4(g) + CO_2(g)$$

C (s) + H₂O (g)
$$\rightarrow$$
 CO (g) + H₂ (g) $\Delta H^{\circ} = 131.3 \text{ kJ}$ CO (g) + H₂O (g) \rightarrow CO₂ (g) + H₂ (g) $\Delta H^{\circ} = -41.2 \text{ kJ}$ CH₄ (g) + H₂O (g) \rightarrow CO (g) + 3H₂ (g) $\Delta H^{\circ} = 206.1 \text{ kJ}$

A. -378.6 kJ

B. -157.2 kJ C. -116.0 kJ D. 15.3 kJ E. 378.6 kJ

18. Nitrogen dioxide can dissociate to nitric oxide and oxygen.

$$2NO_2(g) \rightleftharpoons 2NO(g) + O_2(g)$$

 $\Delta H^{\circ} rxn = +114 \text{ kJ}$

Under which reaction conditions would you expect to produce the largest amount of oxygen?

- A. high temperature, high pressure
- B. low temperature, high pressure
- C. high temperature, low pressure
- D. low temperature, low pressure
- E. You need to know the equilibrium constant to make the prediction
- 19. A 1.35 m agueous solution of compound X had a boiling point of 101.4 °C. Which one of the following could be compound X? The boiling point elevation constant for water is 0.52 °C/m.
 - A. CH₃CH₂OH
- B. C₆H₁₂O₆ C. Na₃PO₄
- D. KCI

E. CaCl₂

20.	What is the atomi	c weight of an elen	nent if 4.00 grams	of it contains 2.98	x 10 ²² atoms?	
	A. 20.2 u	B. 80.8 u	C. 19.7 u	D. 8.08 u	E. None of these	
21.	(molar mass = 18	or pressure of a sc 0.2 g/mol) in 920.0 23.76 mm Hg. Ass	ml of water at 25	°C. The vapor pre	ssure of pure	
	A. 0.278 mm Hg B. 0.605 mm Hg C. 23.0 mm Hg D. 23.5 mm Hg E. 23.8 mm Hg					
22.	-	nasses of different ke the solution hav	•			
	A. NaOH	B. KCI	C. KOH	D. LiOH	E. All would be the	same
23.	•	of Ba(OH) $_2$ is disscolution must be dil	9		0 L of solution. How 00 L of 0.100 M	
	A. 561 mL	B. 244 mL	C. 178 mL	D. 17.8 mL	E. 4.10 mL	
24.	The rate constant activation energy	for a reaction at 4 for the reaction?	0°C is exactly 3 tin	nes that at 20°C.	What is the	
	A. 9.13 kJ/mol B. 5.04 kJ/mol C. 41.9 kJ/mol D. 3.00 kJ/mol E. none of these					
0.5	VA/legation than be not a	antimanta af tha [Oli	:		0.400 M C-Cl	
25.	and 1.00 g AgCl(s	estimate of the [Cl ⁻] s) are mixed?	ion concentration	when 50.0 mL or	J. 100 M CaCI ₂	
	A. 0.00500M B. 0.0500 M C. 0.200 M D. 0.339 M E. 0.450 M					
26.			a liter of hydroger	gas, with both ga	ses at 25 °C and 2 atm	
	Which statement A. The CO ₂ and	is correct? H ₂ molecules have	the same total ma	nce		
	B. There are mode.C. The CO₂ andD. The CO₂ mole.	re molecules of H_2 H_2 molecules hit the cules are on the a	than CO ₂ present. e walls of the cont verage moving slo	ainers with the sar wer than the H_2 m		

- 27. Which of the following molecules is paramagnetic?
 - A. Sc³⁺
- B. Mn²⁺
- C. Zn
- D. Zn²⁺
- E. Al³⁺

- 28. Give the IUPAC name for the following compound:
 - A. 1-chloro-2-methylcyclohexane
 - B. 1-methyl-2-chlorocyclohexane
 - C. 1-chloro-5-methylcyclohexane
 - D. 1-methyl-5-chlorocyclohexane
 - E. 1,2-chloromethylcyclohexane

- 29. For a process with $\Delta S < 0$ J/K mol, which of the following statements is correct?
 - A. The process will be spontaneous if $\Delta H < 0$ kJ.
 - B. The process will be spontaneous if $\Delta H < T\Delta S$.
 - C. The process can never be spontaneous.
 - D. The process will be spontaneous, regardless of ΔH .
 - E. The process will be spontaneous as long as $\Delta S_{surr} > 0$ J/K mol.
- 30. What is the molecular shape of CIF₂⁺?
 - A. Linear
 - B. B. trigonal planar
 - C. C. tetrahedral
 - D. D. bent
 - E. E. none of these
- 31. Which of the following are evidence for a chemical change?
 - I. Formation of a new compound
 - II. Evaporation of a liquid
 - III. Change of odor
 - IV. Color change
 - V. Melting
 - A. I, II, IV, V
 - B. II. V
 - C. I. III. IV
 - D. I, II
 - E. All of the above
- 32. A molecule contains 76.34% carbon, 6.41% hydrogen, and 17.25% fluorine. Each molecule contains one fluorine atom. What is the total number of carbon, hydrogen, and fluorine atoms in one molecule?
 - A. 8

- B. 12
- C. 13
- D. 14
- E. 15

USE THE STANDARD POTENTIALS BELOW FOR THE QUESTIONS 33 AND 34.

- 33. For a voltaic cell employing the Cu and Pb half-reactions with Cu(NO₃)₂ and Pb(NO₃)₂, respectively, calculate the maximum amount of work that would accompany the reaction of one mole of lead under standard conditions.
 - A. -40.3 kJ
 - B. -45.3 kJ
 - C. -90.5 kJ
 - D. No work can be done. The system is at equilibrium.
 - E. None of the above.
- 34. Which of the following metals would dissolve in stomach acid?
 - A. Cu, Pb, and Ni
 - B. Pb and Ni
 - C. Cu
 - D. Cu and Pb
 - E. None
- 35. Sulfuric acid may be produced by the following process:

$$4FeS2 + 11O2 \rightarrow 2Fe2O3 + 8SO2$$
$$2SO2 + O2 \rightarrow 2SO3$$
$$SO3 + H2O \rightarrow H2SO4$$

How many moles of H₂SO₄ will be produced from 5.62 moles of FeS₂ assuming each step is 100% efficient?

- A. 1.40 mol
- B. 2.81 mol
- C. 5.62 mol
- D. 11.2 mol
- E. 30.9 mol
- 36. The base dissociation constant, K_b , equals 7.9 x 10^{-13} for SO_4^{2-} and the K_a is 1.78 x 10^{-5} for NH_4^+ . Which statement about the following equilibrium is correct?

$$HSO_4^-(aq) + NH_3(aq) \rightleftharpoons SO_4^{2-}(aq) + NH_4^+(aq)$$

- A. The initial concentrations of the hydrogen sulfate ion and ammonia must be known before any prediction can be made.
- B. The reactants will be favored because ammonia is a stronger base than the sulfate anion.
- C. Neither reactants or products will be favored because all of the species are weak acids or bases.
- D. The products will be favored because the hydrogen sulfate ion is a stronger acid than the ammonium ion.
- E. Once equilibrium is established the pH will be neutral.

37.	Silver crystallizes in a face-centered cubic system. If the edge of the unit cell is 407 pm, what is the radius of a silver atom?										
	A.	144 pm	B.	176 pm	C.	204 pm	D. 288 pm	E.	352 pm		
38.		o decays by a first a half-life of 7.8 r		•			•		•		
	A.	7.8 min.	B.	16 min.	C.	23 min.	D. 31 min.	E.	3 9 min.		
39.	A. B. C. D.	nich of the following C_2H_4 N_2F_4 $COCl_2$ H_2CCCH_2 There is more tha						ıe.			
40.		nsider the Lewis s	truct B.			/hat orbital is th sp	ne lone pair on nitr D. sp²	-	n located in?		