2013 Academic Challenge
 State Physics Exam Solutions

1. Correct response: A

$$
a=\frac{v-v_{0}}{t}=\frac{(25.0 \mathrm{~m} / \mathrm{s})-(15.0 \mathrm{~m} / \mathrm{s})}{10.0 \mathrm{~s}}=1.00 \mathrm{~m} / \mathrm{s}^{2}
$$

2. Correct response: B

$$
x_{1}=x_{0}+\frac{1}{2}\left(v_{1}+v_{0}\right) t_{1}=0+\frac{1}{2}(15.0 \mathrm{~m} / \mathrm{s}+25.0 \mathrm{~m} / \mathrm{s})(10.0 \mathrm{~s})=200 . \mathrm{m}
$$

3. Correct response: A

$$
\begin{aligned}
6.00 \times 10^{8} \text { gloobs } & =24.0 \mathrm{hr} \times \frac{3600 \mathrm{~s}}{1 \mathrm{hr}} \Rightarrow 1.00 \text { gloob }=1.44 \times 10^{-4} \mathrm{~s} \\
5.00 \times 10^{4} \frac{\text { thripps }}{\text { gloob }} & =2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s} \Rightarrow \\
1.00 \text { thripps } & =\frac{2.9979 \times 10^{8} \mathrm{~m} \cdot \text { gloob } / \mathrm{s}}{5.00 \times 10^{4}} \times \frac{1.44 \times 10^{-4} \mathrm{~s}}{1.00 \text { gloob }}=0.863 \mathrm{~m}
\end{aligned}
$$

4. Correct response: B

Using a coordinate system with east in the $+x$ direction and north in the $+y$ direction, the total displacement components are

$$
d_{x}=400 . \mathrm{m} \text { and } d_{y}=+100 . \mathrm{m}-400 . \mathrm{m}=-300 . \mathrm{m}
$$

The magnitude of the displacement is

$$
d=\sqrt{d_{x}^{2}+d_{y}^{2}}=\sqrt{(400 . \mathrm{m})^{2}+(-300 . \mathrm{m})^{2}}=500 . \mathrm{m}
$$

5. Correct response: B

Average speed is total path length divided by total travel time:

$$
\bar{v}=\frac{\text { path length }}{\text { travel time }}=\frac{100 . \mathrm{m}+400 . \mathrm{m}+400 . \mathrm{m}}{15.0 \mathrm{~s}+80.0 \mathrm{~s}+90.0 \mathrm{~s}}=4.86 \mathrm{~m} / \mathrm{s}
$$

6. Correct response: E

The only horizontal component of the force on the 6.00 kg block is the 30.0 N tension force. The horizontal acceleration of the 6.00 kg block is

$$
a=\frac{F}{m}=\frac{30.0 \mathrm{~N}}{6.00 \mathrm{~kg}}=5.00 \mathrm{~m} / \mathrm{s}^{2}
$$

The block of mass m has the same magnitude acceleration, but in the downward direction. The total vertical force on that block is the upward tension force and the downward gravitational force. By Newton's $2^{\text {nd }}$ Law,

$$
30.0 \mathrm{~N}-m g=m a \Rightarrow m=\frac{30.0 \mathrm{~N}}{a+g}=\frac{30.0 \mathrm{~N}}{-5.00 \mathrm{~m} / \mathrm{s}^{2}+9.80 \mathrm{~m} / \mathrm{s}^{2}}=6.25 \mathrm{~kg}
$$

2013 Academic Challenge
 State Physics Exam Solutions

7. Correct response: D

Using a coordinate system with east in the $+x$ direction and north in the $+y$ direction, the total displacement components are

$$
\begin{aligned}
& d_{x}=(200 . \mathrm{mi}) \cos \left(30.0^{\circ}\right)+(400 . \mathrm{mi}) \cos \left(-10.0^{\circ}\right)=567 . \mathrm{mi} \\
& d_{y}=(200 . \mathrm{mi}) \sin \left(30.0^{\circ}\right)+(400 . \mathrm{mi}) \sin \left(-10.0^{\circ}\right)=30.5 \mathrm{mi}
\end{aligned}
$$

The magnitude of the displacement is

$$
d=\sqrt{d_{x}^{2}+d_{y}^{2}}=\sqrt{(567 . \mathrm{m})^{2}+(30.5 \mathrm{~m})^{2}}=568 . \mathrm{m}
$$

8. Correct response: E

$$
F=b x^{3} \Rightarrow b=\frac{F}{x^{3}}
$$

The SI units of the right hand side if this equation are

$$
\frac{\mathrm{N}}{\mathrm{~m}^{3}}=\frac{\frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}}}{\mathrm{~m}^{3}}=\frac{\mathrm{kg}}{\mathrm{~m}^{2} \cdot \mathrm{~s}^{2}}
$$

9. Correct response: A

Using a coordinate system with east in the $+x$ direction and north in the $+y$ direction,
$W=\vec{F} \cdot \vec{d}=F_{x} d_{x}+F_{y} d_{y}=(30.0 \mathrm{~N})\left(10.0 \mathrm{~m} \cos \left(-10.0^{\circ}\right)\right)+(40.0 \mathrm{~N})\left(10.0 \mathrm{~m} \sin \left(-10.0^{\circ}\right)\right)=59.8 \mathrm{~J}$

10. Correct response: E

By definition, the work done by a conservative force is independent of the path followed. By the Work-Energy Theorem, the change in kinetic energy is also independent of the path followed.
11. Correct response: B

$$
\Delta K+\Delta U=0 \quad \Rightarrow \quad \frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}+\frac{1}{2} k x_{2}^{2}-\frac{1}{2} k x_{1}^{2}+\Delta U_{\text {gravitational }}=0 \quad \Rightarrow
$$

$$
\Delta U_{\text {gravitational }}=\frac{1}{2} m v_{1}^{2}-\frac{1}{2} m v_{2}^{2}+\frac{1}{2} k x_{1}^{2}-\frac{1}{2} k x_{2}^{2}=0-0+0-\frac{1}{2}(400 . \mathrm{N} / \mathrm{m})(0.200 \mathrm{~m})^{2}=-8.00 \mathrm{~J}
$$

12. Correct response: B

Using a coordinate system with in the $+x$ direction toward the right and the $+y$ direction upward,

$$
\begin{aligned}
\vec{F}_{n e t} & =m \vec{a} \Rightarrow F_{n e t}=(15.0 \mathrm{~N}) \cos 40.0^{\circ}-8.00 \mathrm{~N}=(2.00 \mathrm{~kg}) a_{x} \\
& \Rightarrow a_{x}=\frac{(15.0 \mathrm{~N}) \cos 40.0^{\circ}-8.00 \mathrm{~N}}{(2.00 \mathrm{~kg})}=1.75 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

2013 Academic Challenge
 State Physics Exam Solutions

13. Correct response: A

The block does not accelerate vertically, so the total vertical force is zero. Using a coordinate system with in the $+x$ direction toward the right and the $+y$ direction upward,

$$
\begin{gathered}
F_{y \text { net }}=-15.0 \mathrm{~N} \sin 40.0^{\circ}-(2.00 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)+F_{\text {normal }}=0 \Rightarrow F_{\text {normal }}=29.2 \mathrm{~N} \\
F_{\text {kinetic friction }}=\mu_{k} F_{\text {normal }} \Rightarrow \mu_{k}=\frac{F_{\text {kinetic friction }}}{F_{\text {normal }}}=\frac{8.00 \mathrm{~N}}{29.2 \mathrm{~N}}=0.274
\end{gathered}
$$

14. Correct response: D

By the impulse momentum relation and using a coordinate system with east as the positive x direction

$$
\stackrel{\rightharpoonup}{F} \cdot t=\Delta \stackrel{\rightharpoonup}{p} \Rightarrow \vec{F}=\frac{\Delta \stackrel{\rightharpoonup}{p}}{t}=\frac{(200 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})-(-800 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})}{2.00 \mathrm{~s}}=500 . \mathrm{N}
$$

15. Correct response: C

Average velocity is total displacement divided by total travel time:

$$
\overline{\bar{v}}=\frac{\text { displacement }}{\text { travel time }}=\frac{-2.00 \mathrm{~m}}{3.00 \mathrm{~s}}=-0.67 \mathrm{~m} / \mathrm{s}
$$

16. Correct response: C

Average speed is total path length divided by total travel time:

$$
\bar{v}=\frac{\text { path length }}{\text { travel time }}=\frac{1.00 \mathrm{~m}+3.00 \mathrm{~m}+4.00 \mathrm{~m}}{3.00 \mathrm{~s}}=2.67 \mathrm{~m} / \mathrm{s}
$$

17. Correct response: B

This is a statement of the law of conservation of angular momentum.

18. Correct response: A

Perfectly elastic means that kinetic energy is conserved during the collision:

$$
\frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}
$$

Momentum is also conserved during the collision:

$$
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}
$$

Eliminating $v_{2 f}$ from these two equations and solving for m_{2} :

$$
m_{2}=m_{1} \frac{\left(v_{1 i}-v_{1 f}\right)^{2}}{\left(v_{1 i}^{2}-v_{1 f}^{2}\right)}=(1.00 \mathrm{~kg}) \frac{\left(5.00 \mathrm{~m} / \mathrm{s}^{2}-1.00 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}}{\left(5.00 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}-\left(1.00 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}}=0.667 \mathrm{~kg}
$$

2013 Academic Challenge

 State Physics Exam Solutions

 State Physics Exam Solutions}
19. Correct response: A

To be in static equilibrium, the sum of the forces and the sum of the torques must be zero.

$$
\begin{aligned}
& \sum F_{\text {horizontal }}=0 \Rightarrow F_{\text {rope }}-F_{\text {wall }}=0 \Rightarrow F_{\text {rope }}=F_{\text {wall }} \\
& \sum \tau=0
\end{aligned} \begin{aligned}
& \sum-F_{\text {rope }}\left(\frac{L}{3.00}\right) \sin 60.0^{\circ}-m g\left(\frac{L}{2.00}\right) \sin 30.0^{\circ}+F_{\text {wall }} L \sin 60.0^{\circ}=0 \\
& \Rightarrow F_{\text {rope }}=\frac{(3.00)(4.00 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 30.0^{\circ}}{(4.00) \sin 60.0^{\circ}}=17.0 \mathrm{~N}
\end{aligned}
$$

Note that the torques were calculated about the contact point of the plank with the floor, and counterclockwise is the positive torque direction.
20. Correct response: B

$$
\begin{aligned}
& \frac{G m_{\text {star }} m_{\text {planet }}}{R^{2}}=m_{\text {planet }} a=m_{\text {planet }} \omega^{2} R=m_{\text {planet }} \frac{4 \pi^{2}}{T^{2}} R \Rightarrow \\
& \quad m_{\text {star }}=\frac{4 \pi^{2}}{G T^{2}} R^{3}=\frac{4 \pi^{2}\left(8.00 \times 10^{11} \mathrm{~m}\right)^{3}}{\left(6.673 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)(30.0 \mathrm{yr})^{2}\left(3.156 \times 10^{7} \mathrm{~s} / \mathrm{yr}\right)^{2}}=3.38 \times 10^{29} \mathrm{~kg}
\end{aligned}
$$

21. Correct response: A

$$
a=\frac{v^{2}}{R}=\frac{\left(\frac{2 \pi R}{T}\right)^{2}}{R}=\frac{4 \pi^{2} R}{T^{2}}=\frac{4 \pi^{2}\left(8.00 \times 10^{8} \mathrm{~km}\right)}{(30.0 \mathrm{yr})^{2}}=\frac{4 \pi^{2}\left(8.00 \times 10^{11} \mathrm{~m}\right)}{\left(9.47 \times 10^{8} \mathrm{~s}\right)^{2}}=3.52 \times 10^{-5} \mathrm{~m} / \mathrm{s}^{2}
$$

22. Correct response: E

$$
\begin{aligned}
& \frac{W}{Q_{H}} \leq\left(1-\frac{T_{C}}{T_{H}}\right) \Rightarrow \frac{Q_{H}-Q_{C}}{Q_{H}} \leq\left(1-\frac{T_{C}}{T_{H}}\right) \Rightarrow \\
& Q_{C} \geq \frac{Q_{H} T_{C}}{T_{H}}=\frac{(2000 . \mathrm{J})([400 .+273.15] \mathrm{K})}{([1200 .+273.15] \mathrm{K})}=914 . \mathrm{J}
\end{aligned}
$$

23. Correct response: B

$$
\begin{aligned}
& Q=Q_{1}+Q_{2}=m_{1} C \Delta T_{1}+m_{2} C \Delta T_{2} \Rightarrow C=\frac{Q}{m_{1} \Delta T_{1}+m_{2} \Delta T_{2}} \\
& C=\frac{40.0 \mathrm{Cal}}{(8.00 \mathrm{~kg})\left(15.0^{\circ} \mathrm{C}-20.0^{\circ} \mathrm{C}\right)+(4.00 \mathrm{~kg})\left(15.0^{\circ} \mathrm{C}-\left[-20.0^{\circ} \mathrm{C}\right]\right)}=0.400 \mathrm{Cal} /\left(\mathrm{kg} \cdot \mathrm{C}^{\circ}\right)
\end{aligned}
$$

24. Correct response: E

Definition of electric potential

2013 Academic Challenge
 State Physics Exam Solutions

25. Correct response: B

Direct application of Faraday's Law

26. Correct response: A

R_{2} and R_{3} are in parallel. Their equivalent resistance is

$$
R_{e q A}=\left(\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)^{-1}=\left(\frac{1}{300 . \Omega}+\frac{1}{600 . \Omega}\right)^{-1}=200 . \Omega
$$

This equivalent resistance is in series with R_{1}, so their equivalent resistance is

$$
R_{e q B}=R_{1}+R_{e q A}=400 . \Omega+200 . \Omega=600 . \Omega
$$

This equivalent is connected to the voltage source, so the current in $R_{\text {eqB }}$ is

$$
I=\frac{V}{R_{e q B}}=\frac{6.00 \mathrm{~V}}{600 . \Omega}=10.0 \mathrm{~mA}
$$

As R_{1} and $R_{\text {eqA }}$ are in series, this is also the current through $R_{\text {eqA }}$. Therefore the voltage across $R_{\text {eqA }}$ is

$$
V_{e q A}=I_{e q A} R_{e q A}=(10.0 \mathrm{~mA})(200 . \Omega)=2.00 \mathrm{~V}
$$

As R_{2} and R_{3} are in parallel, this is also the voltage across R_{3}.

27. Correct response: D

$$
\begin{aligned}
& \rho_{\text {liquid }} V_{\text {submerged }} g=\rho_{\text {object }} V_{\text {object }} g \Rightarrow \frac{V_{\text {submerged }}}{V_{\text {object }}}=\frac{\rho_{\text {object }}}{\rho_{\text {liquid }}} \\
& \Rightarrow \frac{V_{\text {submerged 1 }}}{V_{\text {object } 1}}=\frac{\rho_{\text {object 1 }}}{\rho_{\text {liquid }}} \text { and } \frac{V_{\text {submerged 2 }}}{V_{\text {object 2 }}}=\frac{\rho_{\text {object 2 }}}{\rho_{\text {liquid }}} \Rightarrow \rho_{\text {object } 2}=\frac{\frac{V_{\text {submerged 2 }}}{\frac{V_{\text {object 2 }}}{\frac{V_{\text {submerged 1 }}}{V_{\text {object 1 }}}} \rho_{\text {object 1 }}}}{\quad \rho_{\text {object 2 }}=\frac{0.80}{0.40}\left(200 . \mathrm{kg} / \mathrm{m}^{3}\right)=400 . \mathrm{kg} / \mathrm{m}^{3}}
\end{aligned}
$$

28. Correct response: E

$$
f_{n}=\frac{n c}{2 L} \Rightarrow f_{1}=\frac{c}{2 L} \Rightarrow c=2 L f_{1}=2(4.00 \mathrm{~m})(50.0 \mathrm{~Hz})=400 . \mathrm{m} / \mathrm{s}
$$

29. Correct response: C

$$
m=\frac{-s^{\prime}}{s} \text { and } \frac{1}{f}=\frac{1}{s}+\frac{1}{s^{\prime}} \Rightarrow f=\left(\frac{-m}{s^{\prime}}+\frac{1}{s^{\prime}}\right)^{-1}=\frac{s^{\prime}}{1-m}=\frac{-30.0 \mathrm{~cm}}{1-4.00}=10.0 \mathrm{~cm}
$$

2013 Academic Challenge State Physics Exam Solutions

30. Correct response: B

$$
K=(\gamma-1) m_{0} c^{2}=\left(\frac{1}{\sqrt{1-v^{2} / c^{2}}}-1\right) m_{0} c^{2}=\left(\frac{1}{\sqrt{1-(0.800 c)^{2} / c^{2}}}-1\right) m_{0} c^{2}=0.667 m_{0} c^{2}
$$

31. Correct response: E

$$
n_{A} \sin \theta_{A}=n_{B} \sin \theta_{B} \Rightarrow n_{B}=n_{A} \frac{\sin \theta_{A}}{\sin \theta_{B}}=(1.00) \frac{\sin 40.0^{\circ}}{\sin 25.0^{\circ}}=1.52
$$

32. Correct response: B

$$
\begin{aligned}
& I=\frac{V}{Z}=\frac{V}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}= \\
& =\frac{20.0 \mathrm{~V}}{\sqrt{(12 \Omega)^{2}+\left(2 \pi\left(4.00 \times 10^{3} \mathrm{~Hz}\right)(0.24 \mathrm{H})-\frac{1}{2 \pi\left(4.00 \times 10^{3} \mathrm{~Hz}\right)\left(0.16 \times 10^{-6} \mathrm{~F}\right)}\right)^{2}}}=3.46 \mathrm{~mA}
\end{aligned}
$$

33. Correct response: B

The current reaches a maximum rms value at the resonant frequency:

$$
f=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{(0.24 \mathrm{H})\left(0.16 \times 10^{-6} \mathrm{~F}\right)}}=812 \mathrm{~Hz}
$$

34. Correct response: C

$$
n \lambda=d \sin \theta \Rightarrow d=\frac{n \lambda}{\sin \theta}=\frac{543 . \mathrm{nm}}{\sin 50.0^{\circ}}=709 \mathrm{~nm}
$$

35. Correct response: C

The electron is a lepton.

