WYSE Academic Challenge
 2015 Regional Physics Exam SOLUTION SET

1. Correct answer: D

Note: [quantity] denotes: units of quantity

$$
[\vec{\tau}]=[\vec{r} \times \vec{F}]=[r][m][a]=[\text { length }][\text { mass }]\left[\text { length / time }^{2}\right]=[\text { mass }][\text { length }]^{2} /[\text { time }]^{2}
$$

2. Correct answer: A

Since the block slides down the incline at constant speed, the vector sum of the Normal force, the gravitational force, and the frictional force acting on the block must be zero.

Parallel to the incline's surface:
a) $\quad-f+m g \sin (\beta)=0 \quad \Rightarrow \quad \mu_{K} N=m g \sin (\beta)$

Perpendicular to the incline's surface:
b) $\quad N-m g \cos (\beta)=0 \quad \Rightarrow \quad N=m g \cos (\beta)$

Dividing equation a) by equation b):

c) $\quad \frac{\mu_{k} N}{N}=\frac{m g \sin (\beta)}{m g \cos (\beta)}$

$$
\mu_{K}=\tan (\beta)
$$

When the block slides at constant velocity, the coefficient of kinetic friction depends only upon the angle the incline makes with the horizontal.
3. Correct answer: E

Average speed according to the times recorded for the rear wheels:

$$
v_{\text {ave }}=\frac{\text { length }}{\text { time }}=\frac{10.00 \mathrm{~m}}{(0.7001-.1429) \mathrm{s}}=17.95 \mathrm{~m} / \mathrm{s}
$$

2015 Regional Physics Exam Solution Set

4. Correct answer: B
$V_{\text {ave }}($ between 0.5459 s and 0.7001 s$) / V_{\text {ave }}($ between 0.0000 s and 0.1429 s$) ?$
Let L represent the distance between front wheels and back wheels.
$\frac{v_{\text {ave(from } 0.5459 \mathrm{~s} \text { to } 0.7001 \mathrm{~s})}}{v_{\text {ave(from } 0.0000 \text { s to } 0.1429 \mathrm{~s})}}=\frac{L /(0.7001-0.5459)}{L /(0.1429-0.0000)}=\frac{0.1429}{0.1542}=0.9267$
5. Correct answer: E

Using conservation of momentum:

$$
\begin{aligned}
m_{1} v_{1, \text { initial }}+m_{2} v_{2, \text { initial }} & =m_{1} v_{1, \text { tinal }}+m_{2} v_{2, \text { tinal }} \\
m_{1}(+23.5)+m_{2}(0) & =m_{1}(-4.00)+m_{2}(15.0) \\
27.5 m_{1} & =15.0 m_{2} \\
m_{1} / m_{2} & =15.0 / 27.5 \\
m_{1} / m_{2} & =0.545
\end{aligned}
$$

6. Correct answer: B
$t=\frac{v-v_{o}}{a}=\frac{\left(\frac{2.9979 \times 10^{8}}{100}\right)-0}{9.80}\left(\frac{\mathrm{~m} / \mathrm{s}}{\mathrm{m} / \mathrm{s}^{2}}\right)=3.06 \times 10^{5} \mathrm{~s}$
7. Correct answer: A

$$
\begin{aligned}
& v^{2}-v_{o}^{2}=2 \mathrm{ad} \\
& d=\frac{v^{2}-v_{o}^{2}}{2 a}=\frac{\left(\frac{2.9979 \times 10^{8}}{100}\right)^{2}-0}{2 \times 9.80}\left(\frac{\mathrm{~m}^{2} / \mathrm{s}^{2}}{\mathrm{~m} / \mathrm{s}^{2}}\right)=4.59 \times 10^{11} \mathrm{~m}
\end{aligned}
$$

8. Correct answer: A

Ball weight $=154.0 \mathrm{~N}$
Forearm weight $=22.0 \mathrm{~N}$
Elbow to biceps connection: $x=0.0480 \mathrm{~m}$.
Elbow to center of gravity (c. g.) of forearm: $\mathrm{d}=0.150 \mathrm{~m}$.
Elbow to ball's center of gravity: $L=0.340 \mathrm{~m}$.
The sum of torques about about any point is zero.

Using the elbow joint to calculate torques acting on the forearm:
$T_{\text {biceps }} \cos \left(10.0^{\circ}\right)(x)(c c w)+W_{\text {forearm }} d(c w)+W_{\text {ball }} L(c w)=0$

2015 Regional Physics Exam Solution Set

$$
\begin{aligned}
& T_{\text {biceps }} \cos \left(10.0^{\circ}\right)(x)(-c w)+W_{\text {forearm }} d(c w)+W_{\text {ball }} L(c w)=0 \\
& T_{\text {biceps }}=\frac{W_{\text {forearm }} d+W_{\text {ball }} L}{x \cos \left(10.0^{\circ}\right)}=\frac{(22.0)(0.150)+(154.0)(.340)}{0.0480 \cos \left(10.0^{\circ}\right)}\left(\frac{\mathrm{Nm}}{\mathrm{~m}}\right)=1180 \mathrm{~N}
\end{aligned}
$$

9. Correct answer: B

$$
\begin{aligned}
& \boldsymbol{a}=\frac{\boldsymbol{F}_{\text {net }}}{m}=\frac{\{-(369 \mathrm{~N} / \mathrm{m}) x+(93.7 \mathrm{~N})\} \hat{x}}{m} \\
& =\frac{\{-(369 \mathrm{~N} / \mathrm{m})(0.800 \mathrm{~m})+(93.7 \mathrm{~N})\} \hat{x}}{0.168 \mathrm{~kg}} \\
& =-1199 \hat{x} \mathrm{~m} / \mathrm{s}^{2}=-1.20 \hat{x} \mathrm{~km} / \mathrm{s}^{2}
\end{aligned}
$$

10. Correct answer: D

The maximum speed occurs where the acceleration (and therefore the force) is zero.
$-(369 \mathrm{~N} / \mathrm{m}) x+(93.7 \mathrm{~N})=0$
$x=\frac{93.7 \mathrm{~N}}{369 \mathrm{~N} / \mathrm{m}}=0.254 \mathrm{~m}$
11. Correct answer: B

Letting down be the positive direction:
$y-y_{o}=v_{o y} t+\frac{1}{2} a_{y} t^{2}$
$y-y_{o}=(0)+\frac{1}{2}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.65 \mathrm{~s})^{2}=13.3 \mathrm{~m}$

12. Correct answer: C
$v_{\text {muzzle }} \cos \left(30.0^{\circ}\right)=v_{\text {horizontal }}=\frac{248 \mathrm{~m}}{1.65 \mathrm{~s}}=150.3 \frac{\mathrm{~m}}{\mathrm{~s}}$
$v_{\text {muzzle }}=\frac{150.3 \frac{\mathrm{~m}}{\mathrm{~s}}}{\cos \left(30.0^{\circ}\right)}=174 \frac{\mathrm{~m}}{\mathrm{~s}}$

13. Correct answer: A

$F-m_{1} g-m_{2} g=m_{\text {total }} a$
$F=\left(m_{1}+m_{2}\right) g+\left(m_{1}+m_{2}\right) a$
$F=\left(m_{1}+m_{2}\right)(g+a)=(0.280 \mathrm{~kg})(9.80+2.2) \mathrm{m} / \mathrm{s}^{2}=3.36 \mathrm{~N}$

Earth's surface

2015 Regional Physics Exam Solution Set

14. Correct answer: B

Since the boy is moving in a circular orbit, his direction of motion is constantly changing. Even though the magnitude of his velocity (i.e., his speed) is constant, the boy's velocity is changing because of the change in direction. The change in the velocity vector is toward the center of the circular orbit. Therefore the boy has an acceleration toward the center of the circular orbit.

Therefore, the net force acting on the boy is radially inward.
15. Correct answer: D
$\mathrm{F}=\frac{\mathrm{Gm}_{\text {Earth }} m_{I S S}}{R_{\text {orbit }}^{2}}=m_{I S S} a_{I S S}$
$a_{\text {ISS }}=\frac{G m_{\text {Earth }}}{R_{\text {orbit }}^{2}}=\frac{\left(6.673 \times 10^{-11}\right)\left(5.98 \times 10^{24}\right)}{\left(6.38 \times 10^{6}+2.50 \times 10^{5}\right)^{2}} \frac{\left(\frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}\right)(\mathrm{kg})}{\left(\mathrm{m}^{2}\right)}$
$a_{\text {ISS }}=9.08 \frac{\mathrm{~N}}{\mathrm{~kg}}=9.08 \mathrm{~m} / \mathrm{s}^{2}$
16. Correct answer: C

$$
W=\boldsymbol{F} \bullet \boldsymbol{d}=|\boldsymbol{F}||\boldsymbol{d}||\cos (\theta)|
$$

θ is the angle between the force and the displacement.

$$
\begin{aligned}
& \boldsymbol{F}=3.50 \mathrm{~N}, \text { east }+6.00 \mathrm{~N}, \text { south } \\
& \boldsymbol{d}=4.00 \mathrm{~m}, \text { west }
\end{aligned}
$$

The work done by the 3.50 N component is:
$W_{3.50 \mathrm{~N}, \text { east }}=(3.50 \mathrm{~N})(4.00 \mathrm{~m}) \cos \left(180^{\circ}\right)=-14.0 \mathrm{~J}$
The work done by the 6.00 N component is:

$$
W_{6.00 \mathrm{~N}, \text { south }}=(6.00 \mathrm{~N})(4.00 \mathrm{~m}) \cos \left(90^{\circ}\right)=0
$$

The total work done by the push is therefore -14 J.

17. Correct answer: E

The work done = the change in energy of the object.

$$
W=\Delta E=E_{\text {final }}-E_{\text {init }}=0-\frac{1}{2} m v_{\text {init }}^{2}=-\frac{1}{2}(125)(49.0)^{2}\left(\frac{\mathrm{~kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2}}\right)=-1.50 \times 10^{5} \mathrm{~J}
$$

2015 Regional Physics Exam Solution Set

18. Correct answer: E

Using conservation of energy:
$E_{\text {final }}=E_{\text {initial }}$
$\frac{1}{2} k x_{\text {final }}^{2}+m g h_{\text {final }}+\frac{1}{2} m v_{\text {final }}^{2}=\frac{1}{2} k x_{\text {init }}^{2}+m g h_{\text {initt }}+\frac{1}{2} m v_{\text {init }}^{2}$
$\frac{1}{2} k x_{\text {final }}^{2}+m g R+\frac{1}{2} m(0)^{2}=\frac{1}{2} k(0)^{2}+m g(0)+\frac{1}{2} m v_{\text {init }}^{2}$
$\frac{1}{2} k x_{\text {tinal }}^{2}+m g R=\frac{1}{2} m v_{\text {init }}^{2} \quad(\leftarrow$ With practice, one would probably start here. $)$
$k=\frac{m v_{\text {init }}^{2}-2 m g R}{x_{\text {final }}^{2}}=\frac{m\left(v_{\text {init }}^{2}-2 g R\right)}{\left(\frac{2 \pi R}{4}\right)^{2}}=\frac{(0.400)\left((6.00)^{2}-2(9.80)(0.250)\right)}{\left(\frac{2 \pi(0.250)}{4}\right)^{2}}\left(\frac{\mathrm{kgm}^{2} / \mathrm{s}^{2}}{\mathrm{~m}^{2}}\right)=80.7 \mathrm{~N} / \mathrm{m}$

19. Correct answer: A

The momentum of the cannon-sled-cannon ball system is conserved (constant) in the Earth frame of reference.

Let: $B=$ ball, $C S=$ cannon \& sled, $E=E a r t h$, r.t. $=$ relative to
Using the relative velocity formula to convert the ball's velocity to the Earth frame:
$v_{\text {Br.t. }}=v_{\text {Br.t. CS }}+v_{\text {CS r.t. }}$
$v_{\text {Br.t. }}=63.0 \mathrm{~m} / \mathrm{s}+v_{\text {CS r.t. }}$
Inserting this into the momentum equation:
Final momentum of the B-CS system = Initial momentum of the B-CS system $=0$
$m_{\text {CS }} v_{\text {CS r.t.E }}+m_{B} v_{\text {Br.t. }}=0$
$m_{\text {CS }} v_{\text {CS r.t. }}+m_{B}\left(63.0 \mathrm{~m} / \mathrm{s}+v_{\text {CS r.t. }}\right)=0$
$\left(m_{\mathrm{CS}}+m_{B}\right) v_{\mathrm{CS} \text { r.t. }}=-m_{B}(63.0 \mathrm{~m} / \mathrm{s})$
$v_{\mathrm{CS} \text { r.t. }}=\left(\frac{-m_{B}}{m_{\mathrm{CS}}+m_{B}}\right)(63.0 \mathrm{~m} / \mathrm{s})=\left(\frac{-76.3}{1450+76.3}\right)(63.0 \mathrm{~m} / \mathrm{s})=-3.15 \mathrm{~m} / \mathrm{s}$
$\left|v_{\text {CS r.t. }}\right|=3.15 \mathrm{~m} / \mathrm{s}$

2015 Regional Physics Exam Solution Set

20. Correct answer: C

Find the weighted average of x :

$x_{\text {avg }}=\frac{\sum_{i} m_{i} x_{i}}{m_{\text {total }}}=\frac{(2.00 \mathrm{~g})(5.00 \mathrm{~cm})+(8.00 \mathrm{~g})(5.00 \mathrm{~cm})+(6.00 \mathrm{~g})\left(5.00 \mathrm{~cm}+5.00 \mathrm{~cm} \cos \left(60.0^{\circ}\right)\right)}{16.0 \mathrm{~g}}$
$x_{\text {avg }}=\frac{(10.0+40.0+45.0) \mathrm{g} \mathrm{cm}}{16.0 \mathrm{~g}}=5.94 \mathrm{~cm}$
21. Correct answer: D
$\Delta \theta=8.50 \mathrm{rev}(2 \pi \mathrm{rad} / \mathrm{rev})=17.0 \pi \mathrm{rad}$
$\omega_{o}=0$
Using a formula from rotational kinematics:
$\Delta \theta=\omega_{0} t+\frac{1}{2} \alpha t^{2}$
$\alpha=\frac{2 \Delta \theta}{t^{2}}=\frac{2(17.0 \pi)}{(15.0 \mathrm{~s})^{2}}=0.475 \mathrm{rad} / \mathrm{s}^{2}$
22. Correct answer: D

The direction of the force is in the same direction as the acceleration. Since the acceleration has a negative x-component and a positive y-component, the acceleration vector lies in the $2^{\text {nd }}$ quadrant.
$\overrightarrow{\mathrm{a}}=(-12.0 \hat{\mathrm{i}}+16.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}^{2}$
$\theta=\tan ^{-1}(16.0 /-12.0)=-53.13^{\circ}$
angular direction $=180^{\circ}-53.13^{\circ}=127^{\circ}$
23. Correct answer: E

$$
|\boldsymbol{F}|=m|\boldsymbol{a}|=(4.50 \mathrm{~kg}) \sqrt{(-12.0)^{2}+(16.0)^{2}} \mathrm{~m} / \mathrm{s}^{2}=90.0 \mathrm{~N}
$$

24. Correct answer: A
\mid Torque $|=|\boldsymbol{F}|$ (lever arm)
$=m g R \sin (\alpha)$
$=(2.45 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(0.180 \mathrm{~m}) \sin \left(35.0^{\circ}\right)$
$=2.48 \mathrm{Nm}$

2015 Regional Physics Exam Solution Set

25. Correct answer: B

The frictional force acts at the contact point between the wheel and the
 surface. The direction of the frictional force is to the left. Applying Newton's $2^{\text {nd }}$ Law:
$21.0 \mathrm{~N}($ right $)+\boldsymbol{F}_{\text {friction }}=(15.0 \mathrm{~kg})\left(0.800 \mathrm{~m} / \mathrm{s}^{2}\right)(\boldsymbol{r i g h t})$
$\boldsymbol{F}_{\text {friction }}=(15.0 \mathrm{~kg})\left(0.800 \mathrm{~m} / \mathrm{s}^{2}\right)($ right $)-21.0 \mathrm{~N}($ right $)$
$\boldsymbol{F}_{\text {friction }}=-9.00 \mathrm{~N}($ right $)=9.00 \mathrm{~N}($ left $)$
$\left|F_{\text {friction }}\right|=9.00 \mathrm{~N}$
26. Correct answer: A
$\omega=\frac{v}{R}=\frac{a t}{R}=\frac{\left(0.800 \mathrm{~m} / \mathrm{s}^{2}\right)(3.00 \mathrm{~s})}{0.250 \mathrm{~m}}=9.60 \mathrm{rad} / \mathrm{s}$
27. Correct answer: C

Using:
Impulse = change in momentum
and
The area under a force versus time graph =|impulse|.
area $=\mid$ impulse $|=|$ momentum \mid

$\frac{1}{2}(3.00 \mathrm{~s})(25.0 \mathrm{~N})+\frac{1}{2}(4.00 \mathrm{~s})(25.0 \mathrm{~N})=87.5 \mathrm{Ns}=\left|m \boldsymbol{v}_{f}-m \boldsymbol{v}_{i}\right|=(18.0 \mathrm{~kg})\left(v_{f}\right)$
$v_{f}=4.86 \mathrm{~m} / \mathrm{s}$
28. Correct answer: D

Gauss' Law relates the net flux of an electric field through a closed surface to the net charge enclosed by that surface.
29. Correct answer: B

An adiabatic process is a process in which the system does not exchange heat with its surroundings.
30. Correct answer: B

$$
\begin{aligned}
& v=f \lambda=\left(\frac{\omega}{2 \pi}\right) \lambda \\
& \omega=\frac{2 \pi v}{\lambda}=\frac{2 \pi(365 \mathrm{~m} / \mathrm{s})}{2.80 \mathrm{~m}}=819 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

2015 Regional Physics Exam Solution Set

31. Correct answer: E
$P_{\text {crawler }}=\frac{18 \times 10^{6} \mathrm{lb}}{(8)(10 . \mathrm{ft})(41 . \mathrm{ft})}=5488 \mathrm{lb} / \mathrm{ft}^{2}$
$P_{\text {person }}=\frac{180 \mathrm{lb}}{(2)(0.75 \mathrm{ft})(0.25 \mathrm{ft})}=480 \mathrm{lb} / \mathrm{ft}^{2}$
$\frac{P_{\text {crawler }}}{P_{\text {person }}}=11$

32. Correct answer: D

$P_{\text {top }}+\frac{1}{2} \rho v_{\text {top }}^{2}=P_{\text {bottom }}+\frac{1}{2} \rho v_{\text {bottom }}^{2}$

$\frac{1}{2} \rho v_{\text {top }}^{2}=(1210 \mathrm{~Pa})+\frac{1}{2} \rho v_{\text {bottom }}^{2}$
$\frac{1}{2} \rho\left(v_{\text {top }}^{2}-v_{\text {bottom }}^{2}\right)=1210 \mathrm{~N} / \mathrm{m}^{2}$
$\frac{1}{2}\left(1.28 \mathrm{~kg} / \mathrm{m}^{3}\right)\left((145 \mathrm{~m} / \mathrm{s})^{2}-v_{\text {bottom }}^{2}\right)=1210 \mathrm{~N} / \mathrm{m}^{2}$
$v_{\text {bottom }}=138 \mathrm{~m} / \mathrm{s}$
33. Correct answer: E

In the given circuit, the 300. Ω resistor and the 400. Ω resistor are in parallel, and those two are in series with the $600 . \Omega$ resistor.

$$
\begin{aligned}
& \begin{aligned}
R_{\text {equiv }} & =600 . \Omega+[300 . \Omega \| 400 . \Omega] \\
& =600 . \Omega+\frac{(300 .)(400 .)}{300 .+400 .} \Omega=600 . \Omega+171.4 \Omega=771.4 . \Omega
\end{aligned} \\
& P=\frac{v^{2}}{R_{\text {equiv }}}=\frac{(2.50)^{2}}{771.4} \mathrm{~W}=8.10 \mathrm{~mW}
\end{aligned}
$$

Note: Series resistances add, while two parallel resistances combine as the product divided by the sum. (This does not extend to three parallel resistances.)

34. Correct answer: C

The speed of a wave on a wire under tension depends upon the tension in the wire and the linear density of the material making up the wire.

$$
\begin{aligned}
& v=\sqrt{\frac{T}{\lambda}}=\sqrt{\frac{454 \mathrm{~N}}{0.332 \mathrm{~kg} / 15.0 \mathrm{~m}}}=143.2 \mathrm{~m} / \mathrm{s} \\
& \mathrm{t}_{\text {round trip }}=\frac{2 L}{v}=\frac{2 \times 15.0 \mathrm{~m}}{143.2 \mathrm{~m} / \mathrm{s}}=0.209 \mathrm{~s}
\end{aligned}
$$

2015 Regional Physics Exam Solution Set

35. Correct answer: D

Conservation of energy:

$$
Q_{H}=W+Q_{C}
$$

Carnot relationship:

$$
\begin{aligned}
& \frac{Q_{C}}{Q_{H}}=\frac{T_{C}}{T_{H}} \\
& Q_{H}=W+Q_{H}\left(\frac{T_{C}}{T_{H}}\right) \\
& W=Q_{H}\left(1-\frac{T_{C}}{T_{H}}\right) \\
& W=(425)\left(1-\frac{32.0+273.15}{147+273.15}\right) \mathrm{J} \\
& W=116 \mathrm{~J}
\end{aligned}
$$

Therefore:

