Question Number	Answer	Question Number	Answer
1	E	21	С
2	E	22	А
3	С	23	С
4	А	24	D
5	E	25	В
6	В	26	А
7	E	27	В
8	А	28	D
9	А	29	E
10	D	30	В
11	С	31	В
12	С	32	В
13	D	33	D
14	В	34	В
15	D	35	E
16	E	36	В
17	А	37	В
18	A	38	С
19	D	39	В
20	D	40	E

Sectional Chemistry Test – 2015 Answer Key

2015 WYSE Academic Challenge Sectional Chemistry Exam Solution Set

1. E. The answer is supported by proper unit conversion as follows:

$$2.50 \text{ mile}^2 \times \frac{(1.6093 \text{ km})^2}{(1 \text{ mile})^2} = 6.47 \text{ km}^2$$

- 2. E. The answer is supported by this setup. $q = mc\Delta t. : 444.7 \text{ J} = 15.0 \text{ g H}_20 \times \frac{4.184 \text{ J}}{\text{g.}^{\circ}\text{C}} \times (t_f - 22.0 \text{ }^{\circ}\text{C}). : t_f = 29.09 \text{ }^{\circ}\text{C}$
- 3. C. Answer is C.
- 4. A. Answer is A. The net ionic equation is $Ca^{2+}(aq) + S^{2-}(aq) \rightarrow CaS(s)$
- 5. E. Calculations support this answer as shown in the following setup. $36.86 \text{ g N x} \frac{1 \text{ mol N}}{14.01 \text{ g N}} = \frac{2.63 \text{ mol}}{2.63 \text{ mol}} = 1.00 \text{ x } 2 = 2 \text{ for the subscript of N}$ $63.14 \text{ g O x} \frac{1 \text{ mol O}}{16.00 \text{ g O}} = \frac{3.95 \text{ mol}}{2.63 \text{ mol}} = 1.50 \text{ x } 2 = 3 \text{ for the subscript of O}$ Explanation: The empirical formula is the lowest whole number mole ratio of the atoms, therefore the answer is: N₂O₃.
- 6. B. The answer is supported by the following setup. $XN_2 = \frac{\text{mol } N_2}{\text{total mol}} = \frac{0.289 \text{ mol}}{(0.289+0.433) \text{ mol}} = 0.400; \quad \therefore XO_2 = 1 - 0.400 = 0.600$
- 7. E. The answer is supported by the following setup. $\frac{\text{mass, 6 H-atom}}{\text{mass, 1 CH}_{3}\text{CH}_{2}\text{OH-molecule}} \times 100 = \frac{6 \text{ amu}}{46 \text{ amu}} \times 100 = 13.0\%$
- 8. A. The concentration of Cl⁻ ion will be twice of that of Ca²⁺ due to the dissociation stoichiometry: CaCl₂(aq) \rightarrow Ca²⁺(aq) + 2 Cl⁻(aq).
- A. Mg is oxidized in the reverse direction with E° = 2.37 V (spontaneously). In that direction Mg will produce the largest voltage of all.
- 10. D. Only CH₂O has trigonal planar geometry.

- 11. C. Answer is C.
- 12. C. Cl⁻ ion is 18-electron species. The electron gain causes it to assume the electron configuration of Ar, the nearest noble gas.
- 13. D. Answer is D.

- 14. B. The answer is supported by the following setup. $pH = -\log [H^+] = -\log (0.025 \text{ M}) = 1.60; pOH = 14 - pH = 12.4$
- 15. D. All formulas are correct; atoms are balanced, coefficients are the lowest whole number.
- 16. E. CO₂ (an acidic anhydride) from animal respiration will dissolve in water making it acidic due to the reaction: CO₂(g) + H₂O(I) \rightarrow H₂CO₃(aq).
- 17. A. Lower pressure relates to higher volume. Higher volume will be utilized if the equilibrium shifts to the right where more gas molecules exist.
- 18. A. Answer is A.
- 19. D. The central atom S is surrounded by four electron domains, giving ~109.5° angle.
- 20. D. Overall it is <u>not</u> a second order reaction, but a third order one. Rate = $k[A]^{0}[B]^{1}[C]^{2}$
- 21. C. Only SiF₄ has tetrahedral angle (109.5°) according to the following drawings.

- 22. A. The answer is supported by this setup. $PV = nRT = \frac{m}{M}RT; D = \frac{m}{V} = \frac{PM}{RT} = \frac{660.0 \text{ mm Hg x } 70.9 \text{ g} \cdot \text{mol}^{-1}}{0.0821 \text{ L} \cdot \text{ atm } \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \text{ x } 313 \text{ K}} \text{ x} \frac{1 \text{ atm}}{760 \text{ mm Hg}} = 2.40 \text{ g/L}$
- 23. C. Oxidation takes place at the anode with loss of electrons on the reactant side.
- 24. D. Answer is D.
- 25. B. The answer is supported by this setup. $\Delta H_{rxn} = [(8 \text{ mol } \Delta H^{o}_{f} \text{ CO}_{2}(g) + 9 \text{ mol } \Delta H^{o}_{f} \text{ H}_{2}\text{O}(g)] - [\{1 \text{ mol } \Delta H^{o}_{f} \text{ C}_{8}\text{H}_{8}(I)\} + (12\frac{1}{2} \text{ mol } \Delta H^{o}_{f} \text{ O}_{2}(g)\}] = [\{8(-393.5)\} + \{9(-241.8)\}] - [-269.7 + 0] = -5054.5 \text{ kJ}$
- 26. A. Answer is A.
- 27. B. The negative value of ΔG° indicates spontaneity and negative value of ΔH° indicates exothermic
- 28. D. Δ rate = $[C_2H_4]^1 [Br_2]^2 = 2^1 \times 2^2 = 8$ times increase.
- 29. E. For first order reaction, $t_{1/2} = \frac{0.693}{k}$; $\therefore t_{1/2}$ is independent of initial concentration.
- 30. B. Answer is B.

- 31. B. Osmotic pressure of 0.10 M NaCl will be lower than that of 0.10 M MgCl₂ as it depends on the concentrations of the ionic particles.
- 32. B. Answer is B.
- 33. D. Pure solid and liquid do not appear in the equilibrium expressions.
- 34. B. Answer is B.
- 35. E. Pure water's pH decreases drastically and buffered water's pH remains nearly unchanged.
- 36. B. In complete ionization of AB₂, two mols of B⁻ will be produced when one mol of A²⁺ is produced in dissolution.
- 37. B. The answer is supported by this setup. $\Delta E = hv = (6.626 \times 10^{-34} \text{ J.s}) \times (1.11 \times 10^{14} \text{ s}^{-1)} = 7.35 \times 10^{-20} \text{ J}$
- 38. C. The answer is supported by this setup. $PV = nRT; P_{tot} = \frac{nRT}{V_{tot}} = \frac{4 \mod x \ 0.0821 \ L. \ atm \ . \ mol^{-1}. \ K^{-1} \ x \ 273 \ K}{11.2 \ L} = 8.00 \ atm$ $x_{O_2} = 0.25; Po_2 = (P_{tot} \ . \ x_{O_2}) = 2.0 \ atm$
- 39. B. Out of the given choices CCl₃[−] is produced in an earlier step and consumed at a later step following the property of an intermediate.
- 40. E. The answer is supported by this setup. $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}; \therefore V_2 = \frac{P_1V_1T_2}{P_2T_1} = \frac{4.25 \text{ atm x } 3.8 \text{ L x } 325 \text{ K}}{365 \text{ K x } 1.75 \text{ atm}} = 8.42 \text{ L}$

References:

- Chemistry,3rd edition, Nivaldo Tro, Pearson, 2014. 9780321809247.
 Chemistry, 13th edition, JohnHill, Terry McCreary,DorisKolb:Pearson, 2014. 9780321750877
- 3. Chemistry, 5th edition, Martin Silberberg, McGraw Hill, 2009, 978-0073048598