Worldwide Youth in Science and Engineering

2015 Academic Challenge

COMPUTER SCIENCE TEST - STATE

This Test Consists of 30 Questions

Computer Science Test Production Team
James D. Feher, McKendree University - Author/Team Leader
Nathan White, McKendree University - Author
Scott Elliott, John A. Logan College - Reviewer
Kathryn Torrey, WYSE - Coordinator of Test Production

GENERAL DIRECTIONS

Please read the following instructions carefully. This is a timed test; any instructions from the test supervisor should be followed promptly.

The test supervisor will give instructions for filling in any necessary information on the answer sheet. Most Academic Challenge sites will ask you to indicate your answer to each question by marking an oval that corresponds to the correct answer for that question. Only one oval should be marked to answer each question. Multiple ovals will automatically be graded as an incorrect answer.

Be sure ovals are marked as \bigcirc, not $\bullet, \oslash, \bigcirc$, etc.

If you wish to change an answer, erase your first mark completely before marking your new choice.
You are advised to use your time effectively and to work as rapidly as you can without losing accuracy. Do not waste your time on questions that seem too difficult for you. Go on to the other questions, and then come back to the difficult ones later if time remains.
*** TIME: 40 MINUTES ***

DO NOT OPEN TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO!

© 2015 Worldwide Youth in Science and Engineering
"WYSE", "Worldwide Youth in Science and Engineering" and the "WYSE Design" are service marks of and this work is the Copyright © 2015 of the Board of Trustees of the University of Illinois at Urbana - Champaign. All rights reserved.

WYSE Academic Challenge

 Computer Science Test (State) - 20151. Given a zero operand instruction set using a stack architecture, which of the expressions given is the result of evaluating the instructions provided? The stack operands are as follows:

ADD - Pops top two items from stack, adds them, pushes the result on top
SUB - Subtracts top item from next item on stack, leaves only the result on top
MUL - Pops top two items from stack, multiplies them, pushes result on top
PUSH - put item on top of stack
POP - take item off top of stack
PUSH A; PUSH B; MUL; PUSH A; PUSH C; PUSH D; MUL; SUB; ADD; POP X
a. $X=(A * B)^{*} D-C+A$
b. $X=\left(A^{*} B\right)+\left(D^{*} C-A\right)$
c. $X=(A * B)-(D-C * A)$
d. $X=\left(A^{*} B\right)-\left(D^{*} C\right)+A$
e. $X=(A * B)+(A-C * D)$
2. Using the tree to the right, list the order in which the nodes would be visited using postorder traversal.
a. $10,12,8,14,7,6$
b. $10,8,12,6,7,14$
c. $14,12,10,8,7,6$
d. $14,12,7,10,8,6$
e. None of the above.

3. Given an array that starts at memory address 840 and is defined as int a [10] [5] [5], what is the memory address of a [6] [4] [4]? (Assume that an integer is stored in one word and the array is stored in row major format with the columns coming second.)
a. 1,014
b. 204
c. 1,840
d. 244
e. 1,024
4. Which of the following is NOT true regarding a max heap?
a. The key in each node is no smaller than the key values in its children.
b. It is a max tree.
c. It is always a complete binary tree.
d. It is always a full binary tree.
e. All of the above are true.
5. If a binary tree has 8 levels, what is the maximum number of nodes the tree could have?
a. 7
b. 63
c. 127
d. 255
e. 511
6. Biased numbers are used to represent the exponent on floating point numbers. The bias of an n bit number is given by $2^{(n-1)}-1$ and is then subtracted from the original number. Using this, determine the decimal value of the 8 bit biased number: 10110110.
a. B6
b. 182
c. 55
d. 54
e. 266
7. Determine the minimal sum of products expression for the Karnaugh map to the right.
a. $C^{\prime} D+B C D+B^{\prime} D^{\prime}$
b. $B D+B^{\prime} C^{\prime}+B^{\prime} D^{\prime}$
c. $C^{\prime} D+B^{\prime} D^{\prime}+B D$
d. $C^{\prime} D+B^{\prime} C^{\prime} D^{\prime}+B D+B^{\prime} C D^{\prime}$
e. Answers b and c both are correct.

	$C^{\prime} D^{\prime}$ 00	$C^{\prime} D$ 01	$C D$ 11	$C D$ 10
$A^{\prime} B^{\prime}$ 00	1	1	0	1
$A^{\prime} B$ 01	0	1	1	0
$A B$ 11	0	1	1	0
$A B^{\prime}$ 10	1	1	0	1

8. What is the decimal result of adding the following 8-bit two's complement numbers?

01011010
01000111
$+\quad 0101$
a. 2011121
b. 10100001
c. -65
d. 161
e. Overflow
9. What is the logical equivalent expression for the circuit to the right?
a. $A^{\prime} C+B^{\prime} C$
b. $(\mathrm{ABC})^{\prime}+\mathrm{C}$
c. $(A B C) C$
d. $A^{\prime} B^{\prime} C+A B^{\prime} C$

e. None of the above.
10. Given a 2-byte system bus that operates at 2 KHz and takes 4 bus cycles to transfer one word of memory, how many bits per second can the system transfer?
a. 8000
b. 32000
c. 128
d. 1000
e. 2Kbits

Use the following code for questions 11 thru 15.

```
/*********************** POINT ************************************)
class Point {
    public:
        Point( int = 1, int = 1 ); // default constructor
        void setX (int xVal) { x = xVal; }; // set x in coordinate pair
        void setY (int yVal) { y = yVal; }; // set y in coordinate pair
        int getY () const { return y; };
        int getX () const { return x; };
        string getName() const { return "Point"; };
        void print() const; // output Point object
    private:
        int x; // x part of coordinate pair
        int y; // y part of coordinate pair
}; // end class Point
Point::Point( int xValue, int yValue ) {
    setX(xValue);
    setY(yValue);
}
void Point::print() const {
    cout << '[' << getX() << ", " << getY() << ']';
} // end function print
/*********************** CIRCLE ************************************)
class Circle : public Point {
    public:
        Circle( int = 0, int = 0, double = 0.0 );
        void setRadius( double ); // set radius
        double getRadius() const { return radius; };
        double getDiameter() const { return radius*2; };
        double getCircumference() const { return 3.14159*getDiameter(); };
        double getArea() const { return 3.14159*radius*radius; };
        string getName() const { return "Circle";};
        void print() const; // output Circle object
        bool operator<(const Circle &right) const
            { return radius < right.radius; };
        Circle operator++(); // pre-increment
        private:
            double radius; // Circle's radius
}; // end class Circle
// default constructor
Circle::Circle( int xValue, int yValue, double radiusValue )
            : Point( xValue, yValue ) // call base-class constructor
{ setRadius( radiusValue ); }
// set radius
void Circle::setRadius( double radiusValue ) {
    radius = ( radiusValue < 0.0 ? 0.0 : radiusValue );
} // end function setRadius
void Circle::print() const {
    cout << "center ";
    Point::print(); // invoke Point's print function
    cout << "; radius " << getRadius();
} // end function print
Point p, *pPtr, list[5];
Circle c, arr[3];
```

11. Which of the following is not a valid initialization of the pointer pPtr from line 59 ?
a. pPtr $=\& C$;
b. pPtr = list;
c. pPtr = *list;
d. pPtr = \&(list[0]);
e. pPtr = \&p;
12. Which best describes the relationship between Point and Circle?
a. Point and Circle are not related.
b. Point Has-A Circle.
c. Circle Has-A Point.
d. Point Is-A Circle.
e. Circle Is-A Point.
13. Which block of code properly displays the area of each Circle in arr?
a. for (int $i=0 ; i<3 ; i++)$
b. for (int i=0; i<3; i++)
cout << 3.14*pow(arr[i].radius,2);
cout << arr.getArea();
c. for (int $i=0 ; i<3 ; i++)$
d. Both a and c work. cout << arr[i].getArea();
e. a, b, and c work.
14. Which principle of object oriented coding best describes the code on lines $29 \& 33$?
a. Encapsulation
b. Abstraction
c. Inheritance
d. Polymorphism
e. None of the above.
15. Which block of code correctly implements the overloaded ++ pre-increment method for the Circle class? This method should add one to the radius of the given Circle.
a. Circle Circle::operator++() \{
b. Circle Circle::operator++() \{
Circle temp = this;
temp.radius++;
return temp;
\}
```
C. Circle Circle::operator++() {
    Circle temp = this;
    radius++;
    return temp;
}
```

e. None of the above.
16. A hard drive spins at 6000 RPM. Given this information, what is the best estimate of the longest time that it would take to locate the data on the hard drive?
a. 1/6000 of a second
b. 1/100 of a second
c. 1/200 of a second
d. 1/3000 of a second
e. None of the above.
17. Which of the following is NOT a function of a modern operating system?
a. Provide device drivers for the hardware.
b. Schedule which processes (programs) are being run.
c. Provide a user interface.
d. Provide an email application for the user.
e. All are services provided by an operating system.
18. An attempt to slow down or stop a computer system or network by flooding it with requests for information and data best describes which of the following?
a. Rogue Wi-Fi hotspot
b. Trojan horse
c. Virus
d. Denial of service attack
e. None of the above.
19. What is displayed by the following code?

```
int a=7, b=10;
cout << ( (a%b) ? 1 : 2 );
```

a. 1
b. 2
c. 3
d. 7
e. 0
20. The following code is an example of what?

```
int max(int array[], int len);
long max(long array[], int len);
double max(double array[], int len);
```

a. Operator interchanging
b. Parameter shifting
c. Repeated function calls
d. Syntax error
e. Function overloading

The remainder of this page is intentionally left blank.

Use the following code for questions 21, 22, \& 23.

```
int func(int n) {
    int retval;
    if (n<2)
        retval = 1;
    else
        retval = fun(n-1) + fun(n-2);
    return retval;
}
```

21. What is displayed by the following call to the function above?
func (6);
a. 0
b. 1
c. 3
d. 5
e. 13
22. Including the initial function call, how many times does the function execute with the call from the previous problem?
func (6);
a. 1
b. 6
c. 25
d. 32
e. None of the above.
23. Which of the following is the best description of the function?
a. recursive
b. sorting
c. static
d. searching
e. None of the above.
24. Within C++, what is a pointer?
a. An operator used to access individual characters within a string.
b. A variable that stores an address of another variable of a particular type.
c. An operator that allows for the addition of variables within a function.
d. Another name for the address-of operator.
e. None of the above.
25. Which reserved word is used to dynamically allocate memory within C++?
a. new
b. another
c. get
d. more
e. None of the above.
26. $A(n)$ \qquad occurs when several processes access and manipulate the same data concurrently and the outcome of the execution depends on the particular order in which the access takes place.
a. deadlock
b. race condition
c. infinite loop
d. abnormal termination
e. None of the above.

Use the following code for questions 27,28, \& 29.

```
template<class T> T func(T x[], int len) {
    T z = x[0];
    for(int i=1; i<len; i++)
        if(z < x[i])
            z = x[i];
    return z;
}
int main(void) {
    int array1[] = { 1,24,34,22};
    long array2[] = { 23456,245,123,1,234,2345};
    cout << func(arrayl, 4) << endl;
    cout << func(array2, 6) << endl;
    return 0;
}
```

27. What will the output be from line 12 ?
a. 0
b. 1
c. 24
d. 34
e. 22
28. What will the output be from line 13 ?
a. 245
b. 23456
c. 123
d. 1
e. 234
29. Which of the following types would need the < operator overloaded before it could be used with func?
a. int
b. long
c. The circle
d. double
e. char object as defined for questions 1115
30. Given the following declaration, what type is x ?
```
int ** x;
```

a. int
b. pointer to an int
c. pointer to a pointer to an int
d. pointer to a pointer to a pointer to an int
e. None of the above.

