2016 Academic Challenge

CHEMISTRY TEST - REGIONAL

- This Test Consists of 40 Questions -

GENERAL DIRECTIONS

Please read the following instructions carefully. This is a timed test; any instructions from the test supervisor should be followed promptly.

The test supervisor will give instructions for filling in any necessary information on the answer sheet. Most Academic Challenge sites will ask you to indicate your answer to each question by marking an oval that corresponds to the correct answer for that question. One oval should be marked to answer each question. Multiple ovals will automatically be graded as an incorrect answer.

Be sure ovals are marked as

If you wish to change an answer, erase your first mark completely before marking your new choice.
You are advised to use your time effectively and to work as rapidly as you can without losing accuracy. Do not waste your time on questions that seem too difficult for you. Go on to the other questions, and then come back to the difficult ones later if time remains.
*** Time: 40 Minutes ***

DO NOT OPEN TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO!

©2016 Worldwide Youth in Science and Engineering
"WYSE", "Worldwide Youth in Science and Engineering" and the "WYSE Design" are service marks of and this work is Copyright ©2016 by the Board of Trustees of the University of Illinois at Urbana - Champaign.

All rights reserved.

		Derior			18		0		9	๑		10	\uparrow	1	18		8A
1A																	
$\begin{gathered} \hline 1 \\ H \\ 1.008 \end{gathered}$	2A											3A	4A	5A	6A	7A	$\begin{gathered} 2 \\ \mathrm{He} \\ 4.003 \\ \hline \end{gathered}$
$\begin{gathered} 3 \\ \mathrm{Li} \\ 6.941 \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.012 \end{gathered}$											$\begin{array}{\|c\|} \hline 5 \\ \text { B } \\ 10.81 \\ \hline \end{array}$	$\begin{gathered} 6 \\ \mathrm{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ N \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ 0 \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathrm{~F} \\ 19.00 \end{gathered}$	10 Ne 20.18
$\begin{gathered} 11 \\ \mathrm{Na} \\ 22.99 \\ \hline \end{gathered}$	12 Mg 24.31											$\begin{array}{\|c\|} \hline 13 \\ \mathrm{Al} \\ 26.98 \\ \hline \end{array}$	14 Si 28.09	$\begin{array}{\|c\|} \hline 15 \\ \mathrm{P} \\ 30.97 \\ \hline \end{array}$	$\begin{gathered} 16 \\ \mathrm{~S} \\ 32.07 \\ \hline \end{gathered}$	$\begin{array}{r} 17 \\ \mathrm{Cl} \\ 35.45 \\ \hline \end{array}$	$\begin{array}{r} 18 \\ \mathrm{Ar} \\ 39.95 \\ \hline \end{array}$
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109									
Fr (223)	$\begin{gathered} \mathrm{Ra} \\ \hline 206 \end{gathered}$	$\begin{aligned} & \mathrm{Ac}^{* *} \\ & (227) \end{aligned}$	Unq	Unp	Unh	Uns	Uno	Une									

*Lanthanides	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	1733.0	175.0
$* *$														
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Potentially Useful Information

$$
\begin{aligned}
& \mathrm{q}=\mathrm{m} \bullet \mathrm{C}_{\mathrm{s}} \bullet \Delta \mathrm{~T} \\
& \Delta \mathrm{~T}_{\mathrm{b}}=\mathrm{i} \bullet \mathrm{~K}_{\mathrm{b}} \bullet \mathrm{~m} \\
& \mathrm{P}_{\text {solvent }}=\mathrm{X}_{\text {solvent }} \bullet \mathrm{P}_{\text {solvent }}^{\circ} \\
& \ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t \\
& {[A]_{t}-[A]_{0}=-k t} \\
& \ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{-\Delta H_{r x n}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \mathrm{pH}=\mathrm{pK} \\
& \mathrm{a}
\end{aligned}+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right), ~ \begin{aligned}
& \Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ} \\
& \Delta E=B\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right) \\
& \Delta \mathrm{G}^{\circ}=-\mathrm{nF} \varepsilon^{\circ} \\
& \Pi=M R T \\
& \mathrm{~F}=96485 \mathrm{C} / \mathrm{mol} \\
& \mathrm{R}=0.08206 \mathrm{~L} \text { atm} / \mathrm{mol} \mathrm{~K} ; 8.3145 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \\
& 1.0 \mathrm{~kg}=2.2 \mathrm{lb} \\
& 1.0 \mathrm{in}=2.54 \mathrm{~cm} \\
& 1 \mathrm{lb}=453.59 \mathrm{~g} \\
& \mathrm{C}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \bullet K_{\mathrm{f}} \bullet \mathrm{m}$
$S_{\text {gas }}=k_{H} \bullet P_{\text {gas }}$
$k=A e^{-E a / R T}$
$\frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}=k t$
$\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{-E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\ln \left(\frac{P_{2}}{P_{1}}\right)=\frac{-\Delta H_{\text {vap }}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$\Delta \mathrm{S}_{\text {surr }}=\frac{-\Delta H_{s y s}}{T}$
$E_{\text {cell }}{ }^{\circ}=E_{\text {red }}{ }^{\circ}+E_{o x}{ }^{\circ}$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$c=\lambda \nu$
$\Delta E=h \nu$
$K_{w}=1.0 \times 10^{-14}$
$B=-2.18 \times 10^{-18} \mathrm{~J}$
$\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$
$1 \mathrm{~atm}=101,325 \mathrm{~Pa}=1.01325 \mathrm{bar}$
$1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2}=0.239 \mathrm{cal}$
$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

Assume all gases behave ideally unless specifically told to do otherwise Assume all solutions are aqueous and at $25^{\circ} \mathrm{C}$ unless specifically told otherwise Assume all gases are at STP unless specifically told otherwise

Simple Rules for the Solubility of Salts in Water

1. Most nitrates are soluble
2. Most salts containing Group 1 ions or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$are soluble
3. Most chloride, bromide, and iodide salts are soluble except those of $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}$, and $\mathrm{Hg}_{2}{ }^{2+}$.
4. Most sulfates are soluble with the exception of $\mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Hg}_{2}{ }^{2+}$, and Ca^{2+}
5. Most hydroxide salts are only slightly soluble with the exception of Group 1 hydroxides. Group $2\left(\mathrm{Ba}^{2+}\right.$ to $\left.\mathrm{Ca}^{2+}\right)$ are slightly soluble.
6. Most sulfides, carbonates, chromates, and phosphates are only slightly soluble.

> WYSE - Academic Challenge
> Chemistry Test (Regional) - 2016

1. Which of the following species is a base?
A. CH_{4}
B. NH_{3}
C. $\mathrm{H}_{2} \mathrm{CO}_{3}$
D. $\mathrm{CH}_{3} \mathrm{COOH}$
E. $\mathrm{CH}_{3} \mathrm{CH}_{3}$
2. The nitrate of an unknown cation is mixed with four different solutions. The results of these mixtures are shown below

Solution Result

1) $\mathrm{NaCl} \quad$ No precipitate
2) $\mathrm{Na}_{2} \mathrm{SO}_{4} \quad$ Precipitate
3) $\mathrm{NaOH} \quad$ No precipitate
4) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ Precipitate

Based on the above results, which of the following is the most likely unknown cation?
A. K^{+}
B. Na^{+}
C. Fe^{2+}
D. Ag^{+}
E. Ca^{2+}
3. A sample of Ne gas is contained in a 265 mL flask at $0.0^{\circ} \mathrm{C}$ at a pressure of 432 mm Hg . If the gas is transferred to a new flask at $25.0^{\circ} \mathrm{C}$, and its pressure is now 355 mm Hg , what is the volume of the new flask?
A. 8060 mL
B. 295 mL
C. 238 mL
D. 352 mL
E. 1000 mL
4. When a gas expands, what is true about work, \boldsymbol{w}, according to thermodynamics?
A. It is negative.
B. It is positive.
C. There is no change in sign.
D. It becomes zero.
E. This cannot be answered without further information.
5. A radio wave has a frequency of $2.10 \times 10^{6} \mathrm{~s}^{-1}$. What is its wavelength?
A. $6.30 \times 10^{14} \mathrm{~m}$
B. $1.43 \times 10^{2} \mathrm{~m}$
C. $7.00 \times 10^{-3} \mathrm{~m}$
D. $2.27 \times 10^{-13} \mathrm{~m}$
E. $1.43 \times 10^{4} \mathrm{~m}$
6. Which of the following has a linear geometry?
A. SO_{2}
B. $\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{CO}_{3}{ }^{2-}$
D. CO_{2}
E. $\mathrm{CH}_{3} \mathrm{Cl}$
7. Which of the following is the best description of intermolecular forces?
A. The forces between atoms in a molecule
B. The forces between the nucleus and an electron
C. The forces between different molecules of a substance
D. The forces valence shell electrons exert on each other
E. The forces between a proton and a neutron
8. Which compound is best described as ionic?
A. PCl_{5}
B. CaSO_{4}
C. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
D. OF_{2}
E. CIBr
9. If a solute dissolves in a solvent, what is likely to be true?
A. The solute-solute attractions are greater than the solvent-solvent attractions
B. The solute-solute attractions are less than the solvent-solvent attractions
C. There is a strong attraction between solute and solvent molecules
D. The solute-solvent attraction is greater than the sum of the solute-solute and solventsolvent
E. Answers B and C
10. A solution of 1.60 g of an unknown compound in 5.00 g of water has a freezing point of $-5.98^{\circ} \mathrm{C}$. The solution does not conduct electricity. What is the molar mass of the compound? [The molal freezing-point constant for water is $-1.86^{\circ} \mathrm{C} / \mathrm{m}$.]
A. $45.0 \mathrm{~g} / \mathrm{mol}$
B. $5.98 \mathrm{~g} / \mathrm{mol}$
C. $99.4 \mathrm{~g} / \mathrm{mol}$
D. $47.8 \mathrm{~g} / \mathrm{mol}$
E. $123 \mathrm{~g} / \mathrm{mol}$
11. Correctly rounded, the sum of $2.7 \times 10^{-3} \mathrm{~mm}$ and $1.5 \times 10^{-4} \mathrm{~mm}$ is:
A. 0.0028 m
B. 0.002 m
C. 0.003 m
D. 0.00285 m
E. 0.0029 m
12. What functional group best represents the following molecule?

$$
\mathrm{H}_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}
$$

A. Alcohol
B. Ether
C. Ester
D. Halide
E. Amine
13. The identity of a monoatomic ion X^{2+} with 23 electrons and 27 neutrons.
A. Na
B. Al
C. Mn
D. Cu
E. Ce
14. Given the following equilibrium:

$$
\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{ClBr}(\mathrm{~g})
$$

and the equilibrium mixture containing $2.0 \times 10^{-3} \mathrm{~mol}$ of $\mathrm{Cl}_{2}, 1.5 \times 10^{-3} \mathrm{~mol}$ of Br_{2}, and $3.0 \times 10^{-2} \mathrm{~mol}$ of ClBr in a 2.0 L container, what is the value of $\mathrm{K}_{\text {eq }}$?
A. 3.0×10^{2}
B. 2.0×10^{4}
C. $60 . \times 10^{1}$
D. 1.0×10^{-4}
E. 3.3×10^{-2}
15. Which of the following represents the chemical species nitrite?
A. HNO_{3}
B. $\mathrm{NO}_{2}{ }^{-}$
C. $\mathrm{NO}_{3}{ }^{-}$
D. $\mathrm{N}_{3}{ }^{-}$
E. NO^{-}
16. The reaction $\mathrm{xA}+\mathrm{B} \rightarrow$ products is found to be second order in A . Which rate equation cannot be correct?
A. Rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]$
B. Rate $=k[\mathrm{~A}][\mathrm{B}]^{1 / 2}$
C. Rate $=k[\mathrm{~A}]^{2}$
D. Rate $=k[A][B]$
E. Answers B and D
17. What is the $\left[\mathrm{OH}^{-}\right]$of an acid with pH of 4.760 ?
A. $9.67 \times 10^{-1} \mathrm{M}$
B. $6.78 \times 10^{-1} \mathrm{M}$
C. $1.74 \times 10^{9} \mathrm{M}$
D. $5.50 \times 10^{-5} \mathrm{M}$
E. $5.75 \times 10^{-10} \mathrm{M}$
18. What is the coefficient for oxygen gas in the properly balanced equation for the combustion of propane and oxygen gas to form carbon dioxide gas and water according to the equation?

$$
\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

A. 1
B. 2
C. 5
D. 10
E. 15
19. The volume of a certain gas sample is 1150 mL at a temperature of 298 K . At what temperature would the same gas sample have a volume of 1.53 L at constant pressure and mass?
A. $248{ }^{\circ} \mathrm{C}$
B. $397^{\circ} \mathrm{C}$
C. $-49.1^{\circ} \mathrm{C}$
D. $124^{\circ} \mathrm{C}$
E. $2.5^{\circ} \mathrm{C}$
20. The three main types of radiations are alpha, beta, and gamma. Which of the following is correct about these radiations?
A. Alpha radiation carries negative charge
B. Beta radiation carries positive charge
C. Gamma radiation carries negative charge
D. Gamma radiation carries no charge
E. Gamma radiation carries positive charge
21. What is the percentage of carbon in sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$?
A. 51.5%
B. 6.4%
C. 42.1%
D. 30.1%
E. 12\%
22. Which of the following best defines ionization energy?
A. It is the energy required to add an electron to an atom.
B. It is the energy required to make both a cation and an anion.
C. It is the energy required to remove an electron from an atom.
D. It is the energy released when an ionic compound dissolves in water.
E. It is the energy needed when an ionic compound dissolves in water.
23. CH_{4} has bond angles of \qquad .
A. 90°
B. 109.5°
C. 120°
D. 180°
E. 360°
24. The name of the scientist who determined the ratio of mass of an electron to its electric charge was \qquad .
A. Rutherford
B. Thompson
C. Dalton
D. Bragg
E. Lavoisier
25. Which of the following solutions would have $\left[\mathrm{Fe}^{3+}\right]=0.030 \mathrm{M}$?
A. 0.30 L of $0.050 \mathrm{M} \mathrm{Fe}_{4}\left(\mathrm{PO}_{4}\right)_{3}$
B. 0.25 L of $0.040 \mathrm{M} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$
C. 0.40 L of $0.030 \mathrm{M} \mathrm{Fe}_{2} \mathrm{O}_{3}$
D. 0.40 L of $0.015 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
E. 0.60 L of $0.020 \mathrm{M} \mathrm{FeN}_{3}$
26. Which of the following is an example of a physical property of molecular oxygen $\left(\mathrm{O}_{2}\right)$?
A. Less dense than Kr gas
B. Reacts with hydrogen
C. Converted to triatomic oxygen $\left(\mathrm{O}_{3}\right)$
D. Separated from water by electrolysis
E. Answers A and D
27. What is the volume of a box with two sides measuring 1.4 meters and that of the third side 24 inches? [39.37 inch $=1.00$ meter]
A. 1.2 meter 3
B. 2.7 meter 3
C. 0.003 meter 3
D. 34 inch 3
E. 47 inch 3
28. Which statement is true about isotopes of the same element?
A. They have the same number of protons
B. They have the same atomic weight
C. They have the same number of neutrons
D. They have a different atomic number
E. Answers B and D
29. Which of the factors is not a condition necessary for equilibrium?
A. A closed system
B. Equal forward and reverse rates of reaction
C. Constant temperature
D. Equal concentrations of reactants and products
E. Constant pressure
30. What is the name of the compound $\mathrm{K}_{3} \mathrm{PO}_{4}$?
A. Potassium Phosphate
B. Potassium Phosphide Oxide
C. Potassium(I) Phosphate
D. Tripotassium Phosphate
E. Tripotassium Monophosphorous Tetroxide
31. In the energy profile of a reaction, the chemical species that exists at the maximum of the curve is called the \qquad .
A. activation energy
B. atomic state
C. intermediate
D. product
E. activated complex

$$
\mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{~g})
$$

A. $15 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}$
B. $3.0 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}$
C. $2.0 \mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2} \mathrm{~S}$
D. $15 \mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2}$
E. $11 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}$
33. How does the kinetic molecular theory of gases explain the inverse relation between the volume and pressure of a gas? When the volume of a gas is reduced, \qquad .
A. gas molecules collide with the container more often, thus increasing the pressure
B. gas molecules experience greater intermolecular forces, thus decreasing the pressure
C. gas molecules increase in kinetic energy, thus increasing the pressure
D. gas molecules increase in temperature, thus increasing the pressure
E. none of these will happen
34. What is the density of methane gas, CH_{4}, at STP?
A. $1.43 \mathrm{~g} / \mathrm{L}$
B. $0.716 \mathrm{~g} / \mathrm{L}$
C. $0.795 \mathrm{~g} / \mathrm{L}$
D. $0.665 \mathrm{~g} / \mathrm{L}$
E. $3.55 \mathrm{~g} / \mathrm{L}$
35. Which one of the following compounds is a nonelectrolyte when dissolved in water?
A. Sugar
B. Sodium chloride
C. Calcium chloride
D. Copper Sulfate
E. Sodium bicarbonate
36. Which of the following hybridization involves bond angle values of 90° and 120° ?
A. sp
B. sp^{2}
C. sp^{3}
D. $s p^{3} d$
E. $s p^{3} d^{2}$
37. Which gas is both diatomic and colored?
A. carbon disulfide
B. oxygen
C. chlorine
D. argon
E. nitrous oxide
38. How many electrons, protons, and neutrons are in an atom of $\mathrm{Cl}-35$?
A. 11-11-13
B. $35-17-17$
C. 17-17-35
D. 17-35-70
E. 17-17-18
39. A solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$ and KCl are added to a solution of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$. Which compound will precipitate out of this combined solution?
A. KNO_{3}
B. $\mathrm{K}_{2} \mathrm{~S}$
C. BaSO_{4}
D. BaCl_{2}
E. $\mathrm{H}_{2} \mathrm{SO}_{4}$
40. What is the general formula for an alkaline earth metal halide?
A. MH
B. $M X$
C. $\mathrm{M}_{2} \mathrm{X}$
D. $M X_{2}$
E. $\mathrm{M}(\mathrm{OH})_{2}$

