2016 Academic Challenge
 CHEMISTRY TEST - SECTIONAL

- This Test Consists of 40 Questions -

Chemistry Test Production Team
Iffat Ali, Lake Land College - Author/Team Leader
Kraig A. Wheeler, Eastern Illinois University - Author
Nancy Carter Dopke, Alma College - Reviewer
Sahid L. Rosado Lausell, WYSE - Coordinator of Test Production

GENERAL DIRECTIONS
Please read the following instructions carefully. This is a timed test; any instructions from the test supervisor should be followed promptly.

The test supervisor will give instructions for filling in any necessary information on the answer sheet. Most Academic Challenge sites will ask you to indicate your answer to each question by marking an oval that corresponds to the correct answer for that question. One oval should be marked to answer each question. Multiple ovals will automatically be graded as an incorrect answer.

Be sure ovals are marked as \square

If you wish to change an answer, erase your first mark completely before marking your new choice.
You are advised to use your time effectively and to work as rapidly as you can without losing accuracy. Do not waste your time on questions that seem too difficult for you. Go on to the other questions, and then come back to the difficult ones later if time remains.
*** Time: 40 Minutes ${ }^{* * *}$

DO NOT OPEN TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO!

©2016 Worldwide Youth in Science and Engineering
"WYSE", "Worldwide Youth in Science and Engineering" and the "WYSE Design" are service marks of and this work is Copyright ©2016 by the Board of Trustees of the University of Illinois at Urbana - Champaign.

All rights reserved.

		Derior			18		0		9	๑		10	\uparrow	1	18		8A
1A																	
$\begin{gathered} \hline 1 \\ H \\ 1.008 \end{gathered}$	2A											3A	4A	5A	6A	7A	$\begin{gathered} 2 \\ \mathrm{He} \\ 4.003 \\ \hline \end{gathered}$
$\begin{gathered} 3 \\ \mathrm{Li} \\ 6.941 \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.012 \end{gathered}$											$\begin{array}{\|c\|} \hline 5 \\ \text { B } \\ 10.81 \\ \hline \end{array}$	$\begin{gathered} 6 \\ \mathrm{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ N \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ 0 \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathrm{~F} \\ 19.00 \end{gathered}$	10 Ne 20.18
$\begin{gathered} 11 \\ \mathrm{Na} \\ 22.99 \\ \hline \end{gathered}$	12 Mg 24.31											$\begin{array}{\|c\|} \hline 13 \\ \mathrm{Al} \\ 26.98 \\ \hline \end{array}$	14 Si 28.09	$\begin{array}{\|c\|} \hline 15 \\ \mathrm{P} \\ 30.97 \\ \hline \end{array}$	$\begin{gathered} 16 \\ \mathrm{~S} \\ 32.07 \\ \hline \end{gathered}$	$\begin{array}{r} 17 \\ \mathrm{Cl} \\ 35.45 \\ \hline \end{array}$	$\begin{array}{r} 18 \\ \mathrm{Ar} \\ 39.95 \\ \hline \end{array}$
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109									
Fr (223)	$\begin{gathered} \mathrm{Ra} \\ \hline 206 \end{gathered}$	$\begin{aligned} & \mathrm{Ac}^{* *} \\ & (227) \end{aligned}$	Unq	Unp	Unh	Uns	Uno	Une									

*Lanthanides	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	1733.0	175.0
$* *$														
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Potentially Useful Information

$$
\begin{aligned}
& \mathrm{q}=\mathrm{m} \bullet \mathrm{C}_{\mathrm{s}} \bullet \Delta \mathrm{~T} \\
& \Delta \mathrm{~T}_{\mathrm{b}}=\mathrm{i} \bullet \mathrm{~K}_{\mathrm{b}} \bullet \mathrm{~m} \\
& \mathrm{P}_{\text {solvent }}=\mathrm{X}_{\text {solvent }} \bullet \mathrm{P}_{\text {solvent }}^{\circ} \\
& \ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t \\
& {[A]_{t}-[A]_{0}=-k t} \\
& \ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{-\Delta H_{r x n}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \mathrm{pH}=\mathrm{pK} \\
& \mathrm{a}
\end{aligned}+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right), ~ \begin{aligned}
& \Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ} \\
& \Delta E=B\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right) \\
& \Delta \mathrm{G}^{\circ}=-\mathrm{nF} \varepsilon^{\circ} \\
& \Pi=M R T \\
& \mathrm{~F}=96485 \mathrm{C} / \mathrm{mol} \\
& \mathrm{R}=0.08206 \mathrm{~L} \text { atm} / \mathrm{mol} \mathrm{~K} ; 8.3145 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \\
& 1.0 \mathrm{~kg}=2.2 \mathrm{lb} \\
& 1.0 \mathrm{in}=2.54 \mathrm{~cm} \\
& 1 \mathrm{lb}=453.59 \mathrm{~g} \\
& \mathrm{C}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \bullet K_{\mathrm{f}} \bullet \mathrm{m}$
$S_{\text {gas }}=k_{H} \bullet P_{\text {gas }}$
$k=A e^{-E a / R T}$
$\frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}=k t$
$\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{-E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\ln \left(\frac{P_{2}}{P_{1}}\right)=\frac{-\Delta H_{\text {vap }}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$\Delta \mathrm{S}_{\text {surr }}=\frac{-\Delta H_{s y s}}{T}$
$E_{\text {cell }}{ }^{\circ}=E_{\text {red }}{ }^{\circ}+E_{o x}{ }^{\circ}$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$c=\lambda \nu$
$\Delta E=h \nu$
$K_{w}=1.0 \times 10^{-14}$
$B=-2.18 \times 10^{-18} \mathrm{~J}$
$\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$
$1 \mathrm{~atm}=101,325 \mathrm{~Pa}=1.01325 \mathrm{bar}$
$1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2}=0.239 \mathrm{cal}$
$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

Assume all gases behave ideally unless specifically told to do otherwise Assume all solutions are aqueous and at $25^{\circ} \mathrm{C}$ unless specifically told otherwise Assume all gases are at STP unless specifically told otherwise

Simple Rules for the Solubility of Salts in Water

1. Most nitrates are soluble
2. Most salts containing Group 1 ions or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$are soluble
3. Most chloride, bromide, and iodide salts are soluble except those of $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}$, and $\mathrm{Hg}_{2}{ }^{2+}$.
4. Most sulfates are soluble with the exception of $\mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Hg}_{2}{ }^{2+}$, and Ca^{2+}
5. Most hydroxide salts are only slightly soluble with the exception of Group 1 hydroxides. Group $2\left(\mathrm{Ba}^{2+}\right.$ to $\left.\mathrm{Ca}^{2+}\right)$ are slightly soluble.
6. Most sulfides, carbonates, chromates, and phosphates are only slightly soluble.

WYSE - Academic Challenge
Chemistry Test (Sectional) - 2016

1. A 30.0 mL sample of $\mathrm{H}_{3} \mathrm{PO}_{4}$ with unknown concentration is titrated with a 0.100 M NaOH solution. The equivalence point is reached when 26.4 mL of NaOH solution is added. What is the concentration of the unknown $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution? Following is the neutralization reaction.

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})
$$

A. 0.150 M
B. 0.0879 M
C. 0.0583 M
D. 0.0293 M
E. 0.0453 M
2. A solution of an acid is mixed with a solution of a base using stoichiometric amounts. The neutral mixture that results contains magnesium nitrate $\left(\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}\right)$. This mixture could have resulted from the combination of which of these pairs of solutions?
A. a solution of MgO and a solution of NH_{3}
B. a solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ and a solution of NH_{3}
C. a solution of MgO and a solution of HNO_{2}
D. a solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ and a solution of HNO_{3}
E. a solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ and a solution of HNO_{2}
3. A sample of a certain gas has a volume of 415 mL at 725 mm Hg and $0.00^{\circ} \mathrm{C}$. What would be the volume of this same sample of gas if it were measured at 760 mm Hg and $0.00^{\circ} \mathrm{C}$?
A. 301 mL
B. 581 mL
C. $830 . \mathrm{mL}$
D. 435 mL
E. 396 mL
4. Which of the following is true regarding the heat of the system and the heat of the surroundings according to thermodynamics?
A. The heat gained by the system is equal to the heat gained by the surroundings.
B. The heat released by the system is equal to the heat gained by the surroundings.
C. The heat lost by the system is less than the heat lost by the surroundings.
D. There is no rule for the heat exchange between the system and the surroundings.
E. Heat gained by the system is greater than the heat gained by the surroundings.
5. What is the half-life of a radioactive nuclide?
A. The period of time it takes to reduce radioactivity by 100%.
B. The time at which the isotope becomes non-radioactive.
C. The period of time in which 25% of the original number of atoms undergoes radioactive decay.
D. The period of time in which the daughter nuclide's atomic mass becomes half of the original element.
E. The period of time in which 50% of the original number of atoms undergo radioactive decay.
6. Nicotine contains $74.03 \% \mathrm{C}, 8.70 \% \mathrm{H}$, and $17.27 \% \mathrm{~N}$. What is its empirical formula?
A. $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}$
B. $\mathrm{C}_{5} \mathrm{HN}_{2}$
C. $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}$
D. $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2}$
E. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}$
7. Determine the wavelength of light with energy of $2.25 \times 10^{-19} \mathrm{~J}$.
A. $1.13 \times 10^{6} \mathrm{~m}$
B. $8.83 \times 10^{-7} \mathrm{~m}$
C. $1.02 \times 10^{23} \mathrm{~m}$
D. $4.98 \times 10^{-61} \mathrm{~m}$
E. $1.13 \times 10^{-6} \mathrm{~m}$
8. Following is a list of reduction potentials of a number of ions. Based on the given values, predict which of the following metals will be the easiest to oxidize.

$$
\begin{array}{ll}
\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{~s}) \mathrm{E}^{\circ}=1.50 \mathrm{~V} & \mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{~s}) \mathrm{E}^{\circ}=-0.25 \mathrm{~V} \\
\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd}(\mathrm{~s}) \mathrm{E}^{\circ}=0.987 \mathrm{~V} & \mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{~s}) \mathrm{E}^{\circ}=-0.14 \mathrm{~V} \\
\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{~s}) \mathrm{E}^{\circ}=-0.763 \mathrm{~V} &
\end{array}
$$

A. Au
B. Ni
C. Pd
D. Sn
E. Zn
9. The molecule 1-propene has the structure $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$ where the symbols " - " and "=" signify a single and double bond, respectively. How many of the carbon atoms in this molecule are sp^{2} hybridized?
A. 0
B. 1
C. 2
D. 3
E. 4
10. What might the reason be for the boiling point of $\mathrm{H}_{2} \mathrm{O}$ being so much higher than that of $\mathrm{H}_{2} \mathrm{~S}$?
A. Water does hydrogen bonding and hydrogen sulfide does not.
B. Water has lighter molar mass than that of hydrogen sulfide.
C. Oxygen uses 2 s orbital for bonding and sulfur uses 3 p orbitals for that purpose.
D. The two examples use different hybridization schemes.
E. None of these answers are correct.
11. The vapor pressure of pure hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$ is 100 . torr at $15.8^{\circ} \mathrm{C}$. Calculate the vapor pressure of a solution containing 20.0 g of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ dissolved in 50.0 mL hexane. The density of hexane is $0.877 \mathrm{~g} / \mathrm{mL}$.
A. 87.7 torr
B. 86.5 torr
C. 32.6 torr
D. 105. torr
E. 76.5 torr
12. What mass of solute is present in $340 . \mathrm{mL}$ of a 5.50 M solution of KOH ?
A. 105 g
B. 1.05 g
C. 1.87 g
D. 74.8 g
E. 56.1 g
13. Which of the following Lewis structures best represents the bonding in NOF based on minimizing the formal atomic charges?
A.

B.

C.

D.

E.

14. Exposing a certain substance to an electric field produces carbon and chlorine. This substance cannot be:
A. a compound
B. an element
C. a mixture
D. a pure substance
E. any of the above answers
15. Acetanilide has a solubility of $5.5 \mathrm{~g} / 100 \mathrm{~mL}$ in $100^{\circ} \mathrm{C}$ water. An amount of 3.5 g of acetanilide was added to 42.0 mL of $100^{\circ} \mathrm{C}$ water and the undissolved acetanilide collected. What is the percent recovery of the collected acetanilide?
A. 2.3 g
B. 34%
C. 34.3%
D. 64%
E. 64.2 \%
16. Which of the following has the highest boiling point?
A. F_{2}
B. Cl_{2}
C. Br_{2}
D. I_{2}
E. Ar
17. An indication that a system at equilibrium favors the products is a \qquad .
A. large K_{eq}
B. positive $\Delta \mathrm{H}$
C. one step mechanism
D. low activation energy
E. equal forward and reverse rates of reaction
18. The correct name for $\mathrm{N}_{2} \mathrm{O}_{5}$ is
A. nitrogen pentoxide
B. pentaoxygen dinitride
C. dinitrogen tetroxide
D. dinitrogen pentoxide
E. nitrous oxide
19. For irreversible chemical reactions, the rate will be affected by changes in all of these factors except:
A. concentration of reactants
B. concentration of products
C. presence of catalyst
D. surface area of solid reactants
E. temperature
20. Identify the acid, base, conjugate acid, and conjugate base in the following reaction.

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

Acid: Base
Conj. base : Conj. acid
A. $\mathrm{NH}_{3}: \mathrm{H}_{2} \mathrm{O}$:
$\mathrm{OH}^{-}: \mathrm{NH}_{4}{ }^{+}$
B. $\mathrm{NH}_{4}^{+}: \mathrm{OH}^{-}$
$\mathrm{NH}_{3}: \mathrm{H}_{2} \mathrm{O}$
C. none: NH_{3}
OH^{-}: none
D. none: $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{NH}_{4}{ }^{+}$: none
E. $\mathrm{H}_{2} \mathrm{O}: \mathrm{NH}_{3}$
$\mathrm{OH}^{-}: \mathrm{NH}_{4}{ }^{+}$
21. A 52.6 mL of 0.724 M solution of potassium hydroxide solution is titrated with a 0.439 M solution of a nitric acid solution. What is the expected volume of nitric acid at the equivalence point according to the following reaction?

$$
\mathrm{KOH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A. 52.6 mL
B. 86.7 mL
C. 43.4 mL
D. 21.7 mL
E. 72.4 mL
22. Which of the following gases would have the greatest density at a given temperature (consider pressure and volume to be constant)?
A. CO_{2}
B. H_{2}
C. NH_{3}
D. CO
E. Ne
23. Five metal spoons are dipped in a bowl of hot soup. Use the specific heat capacities $\left(\mathrm{c}_{\mathrm{p}}\right)$ given in parenthesis to identify the spoon that will heat up faster for a given mass.
A. Aluminum ($0.897 \mathrm{~J} / \mathrm{g} . \mathrm{K}$)
B. Copper ($0.385 \mathrm{~J} / \mathrm{g} . \mathrm{K}$)
C. Silver ($0.235 \mathrm{~J} / \mathrm{g} . \mathrm{K}$)
D. Gold $(0.129 \mathrm{~J} / \mathrm{g} . \mathrm{K})$
E. Nickel ($0.445 \mathrm{~J} / \mathrm{g} . \mathrm{K}$)
24. What is the percentage of oxygen in caffeine, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$?
A. 49.5%
B. 28.9%
C. 16.5%
D. 32.7%
E. 8.33\%
25. Which of the following represents the ground state electron configuration of a neutral calcium atom?
A. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$
D. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$
E. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2}$
26. What is the balanced net ionic equation for the reaction of aluminum sulfate with sodium hydroxide?
A. $2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$
B. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+6 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{aq})+3 \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$
C. $\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$
D. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+6 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$
E. $3 \mathrm{Al}(\mathrm{s})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$
27. Which of the following combinations of two elements is most likely to produce highly ionic bonds?
A. nitrogen and oxygen
B. nitrogen and fluorine
C. boron and nitrogen
D. lithium and fluorine
E. hydrogen and fluorine
28. Iodine and frozen carbon dioxide pass directly from the solid phase to the gas phase (skipping the liquid phase) if heat is applied. What is this phase transformation from solid to gas called?
A. sublimation
B. deposition
C. freezing
D. boiling
E. condensation
29. Which of the following statements about atomic structure is incorrect?
A. Protons and neutrons in the nucleus are tightly packed.
B. Most of the mass of an atom is concentrated in the nucleus.
C. Electrons are located in quantized energy levels.
D. The number of protons and neutrons are always equal.
E. The space occupied by electrons is larger than the volume of the nucleus.
30. Which ion(s) participates as a spectator ion(s) in the precipitation of MgSO_{3} from combining aqueous solutions of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and MgCl_{2} ?
A. Na^{+}only
B. Mg^{2+} only
C. Na^{+}and Cl^{-}
D. $\mathrm{SO}_{3}{ }^{2-}$ and Cl^{-}
E. Mg^{2+} and $\mathrm{SO}_{3}{ }^{2-}$
31. Two students, Lisa and Mark, determined the mass of an object. Lisa measured the object and received the values of $1.135 \mathrm{mg}, 1.131 \mathrm{mg}, 1.138 \mathrm{mg}$, and 1.137 mg . Mark measured the same object and received $0.913 \mathrm{mg}, 0.811 \mathrm{mg}, 0.990 \mathrm{mg}$, and 0.798 mg . The accepted mass of the object is 0.825 mg . Which statement(s) best describes the results obtained by Lisa and Mark.
A. Lisa's results were more precise.
B. Lisa's results were more accurate.
C. Mark's results were more accurate.
D. Lisa and Mark's results were equally precise.
E. Answers A and C.
32. Which statement about noble gases is correct?
A. They form highly colored compounds.
B. They are highly reactive with halogens and metals.
C. Their abundance in nature is low.
D. Readily form ions.
E. They exist as single atoms rather than as molecules.
33. Consider the following equilibrium:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

At equilibrium, the $\left[\mathrm{H}_{2}\right]=0.015 \mathrm{~mol} / \mathrm{L},\left[\mathrm{I}_{2}\right]=0.015 \mathrm{~mol} / \mathrm{L}$ and $[\mathrm{HI}]=0.23 \mathrm{~mol} / \mathrm{L}$. What is the value of the equilibrium constant?
A. 4.3×10^{-3}
B. 1.6×10^{-2}
C. 2.3×10^{2}
D. 1.5×10^{2}
E. 1.0×10^{-1}
34. What is the correct formula for cesium sulfate?
A. CsSO_{4}
B. $\mathrm{Cs}_{2} \mathrm{SO}_{3}$
C. $\mathrm{Cs}_{2} \mathrm{SO}_{4}$
D. $\mathrm{Cs}_{2} \mathrm{SO}_{5}$
E. $\mathrm{Se}_{2} \mathrm{SO}_{4}$
35. If you use 12 mol of H_{2} and 7 mol of O_{2} to form $\mathrm{H}_{2} \mathrm{O}$, which is the limiting reagent and why?

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

A. O_{2}, because $7 \mathrm{~mol} \mathrm{O}_{2}$ is lower in number than 12 moles H_{2}.
B. H_{2}, because all of H_{2} will be used up and some of O_{2} will remain as excess.
C. O_{2}, because you will need additional 5 mol .
D. H_{2}, because you will have 5 mol left over.
E. O_{2}, because it is very reactive.
36. The chemical equation for the reaction of nitrogen oxide, NO , and chlorine, Cl_{2}, is:

$$
2 \mathrm{NO}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NOCl}
$$

The initial rates of reaction for various concentrations of the reactants were measured and recorded at constant temperature as follows:

Experiment	$[\mathrm{NO}](\mathrm{M})$	$\left[\mathrm{Cl}_{2}\right](\mathrm{M})$	$-\Delta\left[\mathrm{Cl}_{2}\right] / \Delta \mathrm{t}(\mathrm{M} / \mathrm{hr})$
1	0.10	0.30	0.50
2	0.10	0.60	2.01
3	0.20	1.20	16.05

Calculate the numerical value for the rate constant (k) in $\mathrm{L}^{2} / \mathrm{mol}^{2} . \mathrm{hr}$.
A. 56
B. 17
C. 4.0
D. 8.0
E. 1.0
37. Which sketch represents an orbital with the quantum numbers $n=4, I=0, m_{l}=0$?
A.

B.

C.

E.

D.

38. What is the percent KClO_{4} by mass in a 2.00 molal aqueous solution?
A. 12.2%
B. 13.8%
C. 18.5%
D. 21.7%
E. 54.2%
39. Which set of quantum numbers is not allowed?
A. $n=4, l=2, m_{l}=2, s=+1 / 2$
B. $n=2, l=0, m_{l}=0, s=+1 / 2$
C. $n=5, I=4, m_{l}=-4, s=-1 / 2$
D. $n=3, l=1, m_{l}=-1, s=-1 / 2$
E. $n=2, l=2, m_{l}=0, s=+1 / 2$
40. Atoms that gain or lose electrons are called
A. non-metals
B. ions
C. isotopes
D. molecules
E. metals

