2016 Academic Challenge
 CHEMISTRY TEST - STATE

- This Test Consists of 40 Questions -

Chemistry Test Production Team
Iffat Ali, Lake Land College - Author/Team Leader
Kraig A. Wheeler, Eastern Illinois University - Author
Nancy Carter Dopke, Alma College - Reviewer
Sahid L. Rosado Lausell, WYSE - Coordinator of Test Production

GENERAL DIRECTIONS

Please read the following instructions carefully. This is a timed test; any instructions from the test supervisor should be followed promptly.

The test supervisor will give instructions for filling in any necessary information on the answer sheet. Most Academic Challenge sites will ask you to indicate your answer to each question by marking an oval that corresponds to the correct answer for that question. One oval should be marked to answer each question. Multiple ovals will automatically be graded as an incorrect answer.

Be sure ovals are marked as \bigcirc, not $\bullet, \bigoplus, \bigcirc$, etc.
If you wish to change an answer, erase your first mark completely before marking your new choice.
You are advised to use your time effectively and to work as rapidly as you can without losing accuracy. Do not waste your time on questions that seem too difficult for you. Go on to the other questions, and then come back to the difficult ones later if time remains.
*** Time: 40 Minutes ***

DO NOT OPEN TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO!

©2016 Worldwide Youth in Science and Engineering
"WYSE", "Worldwide Youth in Science and Engineering" and the "WYSE Design" are service marks of and this work is Copyright ©2016 by the Board of Trustees of the University of Illinois at Urbana - Champaign. All rights reserved.

		Derior			18		0		9	๑		10	\uparrow	1	18		8A
1A																	
$\begin{gathered} \hline 1 \\ H \\ 1.008 \end{gathered}$	2A											3A	4A	5A	6A	7A	$\begin{gathered} 2 \\ \mathrm{He} \\ 4.003 \\ \hline \end{gathered}$
$\begin{gathered} 3 \\ \mathrm{Li} \\ 6.941 \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.012 \end{gathered}$											$\begin{array}{\|c\|} \hline 5 \\ \text { B } \\ 10.81 \\ \hline \end{array}$	$\begin{gathered} 6 \\ \mathrm{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ N \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ 0 \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathrm{~F} \\ 19.00 \end{gathered}$	10 Ne 20.18
$\begin{gathered} 11 \\ \mathrm{Na} \\ 22.99 \\ \hline \end{gathered}$	12 Mg 24.31											$\begin{array}{\|c\|} \hline 13 \\ \mathrm{Al} \\ 26.98 \\ \hline \end{array}$	14 Si 28.09	$\begin{array}{\|c\|} \hline 15 \\ \mathrm{P} \\ 30.97 \\ \hline \end{array}$	$\begin{gathered} 16 \\ \mathrm{~S} \\ 32.07 \\ \hline \end{gathered}$	$\begin{array}{r} 17 \\ \mathrm{Cl} \\ 35.45 \\ \hline \end{array}$	$\begin{array}{r} 18 \\ \mathrm{Ar} \\ 39.95 \\ \hline \end{array}$
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109									
Fr (223)	$\begin{gathered} \mathrm{Ra} \\ \hline 206 \end{gathered}$	$\begin{aligned} & \mathrm{Ac}^{* *} \\ & (227) \end{aligned}$	Unq	Unp	Unh	Uns	Uno	Une									

*Lanthanides	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	1733.0	175.0
$* *$														
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Potentially Useful Information

$$
\begin{aligned}
& \mathrm{q}=\mathrm{m} \bullet \mathrm{C}_{\mathrm{s}} \bullet \Delta \mathrm{~T} \\
& \Delta \mathrm{~T}_{\mathrm{b}}=\mathrm{i} \bullet \mathrm{~K}_{\mathrm{b}} \bullet \mathrm{~m} \\
& \mathrm{P}_{\text {solvent }}=\mathrm{X}_{\text {solvent }} \bullet \mathrm{P}_{\text {solvent }}^{\circ} \\
& \ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t \\
& {[A]_{t}-[A]_{0}=-k t} \\
& \ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{-\Delta H_{r x n}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \mathrm{pH}=\mathrm{pK} \\
& \mathrm{a}
\end{aligned}+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right), ~ \begin{aligned}
& \Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ} \\
& \Delta E=B\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right) \\
& \Delta \mathrm{G}^{\circ}=-\mathrm{nF} \varepsilon^{\circ} \\
& \Pi=M R T \\
& \mathrm{~F}=96485 \mathrm{C} / \mathrm{mol} \\
& \mathrm{R}=0.08206 \mathrm{~L} \text { atm} / \mathrm{mol} \mathrm{~K} ; 8.3145 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \\
& 1.0 \mathrm{~kg}=2.2 \mathrm{lb} \\
& 1.0 \mathrm{in}=2.54 \mathrm{~cm} \\
& 1 \mathrm{lb}=453.59 \mathrm{~g} \\
& \mathrm{C}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \bullet K_{\mathrm{f}} \bullet \mathrm{m}$
$S_{\text {gas }}=k_{H} \bullet P_{\text {gas }}$
$k=A e^{-E a / R T}$
$\frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}=k t$
$\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{-E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\ln \left(\frac{P_{2}}{P_{1}}\right)=\frac{-\Delta H_{\text {vap }}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$\Delta \mathrm{S}_{\text {surr }}=\frac{-\Delta H_{s y s}}{T}$
$E_{\text {cell }}{ }^{\circ}=E_{\text {red }}{ }^{\circ}+E_{o x}{ }^{\circ}$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$c=\lambda \nu$
$\Delta E=h \nu$
$K_{w}=1.0 \times 10^{-14}$
$B=-2.18 \times 10^{-18} \mathrm{~J}$
$\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$
$1 \mathrm{~atm}=101,325 \mathrm{~Pa}=1.01325 \mathrm{bar}$
$1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2}=0.239 \mathrm{cal}$
$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

Assume all gases behave ideally unless specifically told to do otherwise Assume all solutions are aqueous and at $25^{\circ} \mathrm{C}$ unless specifically told otherwise Assume all gases are at STP unless specifically told otherwise

Simple Rules for the Solubility of Salts in Water

1. Most nitrates are soluble
2. Most salts containing Group 1 ions or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$are soluble
3. Most chloride, bromide, and iodide salts are soluble except those of $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}$, and $\mathrm{Hg}_{2}{ }^{2+}$.
4. Most sulfates are soluble with the exception of $\mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Hg}_{2}{ }^{2+}$, and Ca^{2+}
5. Most hydroxide salts are only slightly soluble with the exception of Group 1 hydroxides. Group $2\left(\mathrm{Ba}^{2+}\right.$ to $\left.\mathrm{Ca}^{2+}\right)$ are slightly soluble.
6. Most sulfides, carbonates, chromates, and phosphates are only slightly soluble.
7. Which of the following salts would likely have no effect on the pH of a solution?
A. NaOH
B. NaCl
C. $\mathrm{Na}_{2} \mathrm{~S}$
D. $\mathrm{CH}_{3} \mathrm{COONa}$
E. NaHCO_{3}
8. A solution of silver nitrate $\left(\mathrm{AgNO}_{3}\right)$ is added to a solution of sodium hydroxide (NaOH). In the precipitation reaction that occurs, which ions will be spectator ions?
A. Ag^{+}and OH^{-}
B. Na^{+}and NO_{3}^{-}
C. Na^{+}and OH^{-}
D. OH^{-}and NO_{3}^{-}
E. H^{+}and OH^{-}
9. A 1.92 gram sample of an unknown gas occupies a volume of 673 mL at STP. What is the molar mass of the unknown gas?
A. $63.9 \mathrm{~g} / \mathrm{mol}$
B. $57.7 \mathrm{~g} / \mathrm{mol}$
C. $12.0 \mathrm{~g} / \mathrm{mol}$
D. $351 \mathrm{~g} / \mathrm{mol}$
E. $200 . \mathrm{g} / \mathrm{mol}$
10. Which of the following is not a standard enthalpy of formation reaction?
A. $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+3 / 2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$
B. $\mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$
C. $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
D. C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
E. $\mathrm{C}($ graphite $)+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$
11. Alpha radiation is symbolized as ${ }_{2}^{4} \mathrm{He}^{2+}$. Identify the correct subatomic particle count of the species.
Neutron Proton Electron

A.	2	2	0
B.	2	2	2
C.	2	4	2
D.	4	2	0
E.	4	2	2

6. Combustion analysis of a hydrocarbon produced $33.010 \mathrm{~g} \mathrm{CO}_{2}$ and $13.511 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of this hydrocarbon?
A. $\mathrm{C}_{2} \mathrm{H}_{4}$
B. $\mathrm{C}_{2} \mathrm{H}_{5}$
C. $\mathrm{C}_{2} \mathrm{H}_{6}$
D. $\mathrm{C}_{2} \mathrm{H}_{3}$
E. CH_{2}
7. Certain light energy used to eject an electron from an atom is $1.96 \times 10^{-17} \mathrm{~J}$. What is the frequency of this light?
A. $3.38 \times 10^{-17} \mathrm{~s}^{-1}$
B. $-3.55 \times 10^{16} \mathrm{~s}^{-1}$
C. $2.96 \times 10^{16} \mathrm{~s}^{-1}$
D. $10.1 \mathrm{~s}^{-1}$
E. $3.38 \times 10^{17} \mathrm{~s}^{-1}$
8. Which of the following is not a redox reaction?
A. $\mathrm{Zn}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
B. $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
C. $\mathrm{NaCl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{AgCl}(\mathrm{s})$
D. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
E. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
9. According to VSEPR theory, the number of atoms bonded to the central atom normally expected to produce an octahedral geometry is:
A. three
B. four
C. five
D. six
E. eight
10. Which of the following correctly shows the forces holding a substance together in order of strength, with weakest first?
A. London dispersion, dipole-dipole, ion-dipole, ion-ion
B. Ion-ion, ion-dipole, dipole-dipole, London dispersion
C. Dipole-dipole, ion-dipole, London dispersion, ion-ion
D. Ion-ion, London dispersion, dipole-dipole, ion-dipole
E. Dipole-dipole, ion-ion, London dispersion, ion-dipole
11. What is the pH of $5.0 \times 10^{2} \mathrm{~mL}$ of $0.10 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$? The pK_{a} of $\mathrm{CH}_{3} \mathrm{COOH}$ is 4.76 .
A. 1.44
B. 3.56
C. 2.88
D. 2.38
E. 4.76
12. What is the coefficient for oxygen in the properly balanced equation for the combustion of octane and oxygen gas to form carbon dioxide gas and water, according to the equation?

$$
\mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

A. 5
B. 10
C. 15
D. 25
E. 50
13. What are the permissible $m_{/}$values for a set of \mathbf{d} orbitals?
A. $0,1,2,3,4$
B. $1,2,3,4,5$
C. $-1,0,1$
D. $-2,-1,0,1,2$
E. $-3,-2,-1,0,1,2,3$
14. A 5.10 g sample of iron is heated from $36.0^{\circ} \mathrm{C}$ to $75.0^{\circ} \mathrm{C}$. The amount of energy required is 89.5 J . What is the specific heat capacity of iron?
A. $1.78 \times 10^{4} \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
B. $11.7 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
C. $0.900 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
D. $0.230 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
E. $0.450 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
15. Caffeine contains $49.48 \% \mathrm{C}, 5.190 \% \mathrm{H}, 28.85 \% \mathrm{~N}$, and $16.48 \% \mathrm{O}$. What is its empirical formula?
A. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$
B. $\mathrm{C}_{4} \mathrm{HN}_{2} \mathrm{O}_{2}$
C. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$
D. $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$
E. $\mathrm{C}_{3} \mathrm{HN}_{3} \mathrm{O}_{2}$
16. Suppose that you have a 2.0 L sample of hydrogen gas at 1.00 atm and $59^{\circ} \mathrm{C}$. If you heat the gas to $84^{\circ} \mathrm{C}$ and it expands to a volume of 3.7 L , what will the final pressure be?
A. 0.58 atm
B. 0.76 atm
C. 0.25 atm
D. 1.0 atm
E. 1.5 atm
17. Metallic zinc reacts with aqueous copper(II) ion to produce aqueous zinc(II) ion and copper metal.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

From the following list, select the line that best describes what happens to some species during the reaction.
A. Species Oxidized: $\mathrm{Cu}^{2+}(\mathrm{aq}) \quad$ Species Reduced: $\mathrm{Zn}^{2+}(\mathrm{aq})$
B. Species Oxidized: $\mathrm{Zn}^{2+}(\mathrm{aq}) \quad$ Species Reduced: $\mathrm{Cu}^{2+}(\mathrm{aq})$
C. Species Oxidized: $\mathrm{Zn}(\mathrm{s})$

Species Reduced: Cu(aq)
D. Species Oxidized: $\mathrm{Cu}^{2+}(\mathrm{aq})$
E. Species Oxidized: $\mathrm{Zn}(\mathrm{s})$

Species Reduced: Zn(s)
Species Reduced: $\mathrm{Cu}^{2+}(\mathrm{aq})$
18. Which of the following has only one lone (nonbonding) pair of electrons on the central atom?
A. AsBr_{5}
B. IF_{5}
C. 1_{3}^{-}
D. XeF_{4}
E. SF_{6}
19. The following reaction is which type?
$2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
A. acid base
B. precipitation
C. redox
D. combustion
E. combination
20. Which molecule has the strongest and shortest carbon-carbon bond?
A. $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}=\mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$
C. $\mathrm{HC} \equiv \mathrm{CH}$
D. $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$
E. $\mathrm{H}_{3} \mathrm{C}-\mathrm{CCl}_{3}$
21. How many unhybridized p-orbitals are there in a $s p$ hybridized nitrogen atom?
A. 0
B. 1
C. 2
D. 3
E. 4
22. Which of the following occurs when equal volumes of aqueous 0.20 M MgS and 0.20 M ZnSO_{4} are mixed?
A. Precipitates of MgSO_{4} and ZnS form.
B. A precipitate of MgSO_{4} forms.
C. A precipitate of ZnS forms.
D. A precipitate does not form.
E. Precipitates of MgS and ZnSO_{4} form.
23. Which one of the following statements about the chemical properties of the alkali metals (Group IA) is correct?
A. Lowest ionization energy in a period
B. Highest electron affinity in the period
C. Nonmetallic character
D. Tendency to form a negative charge
E. Smallest atomic radius in a period
24. At $25^{\circ} \mathrm{C}$, the density of water is $0.997 \mathrm{~g} / \mathrm{mL}$, whereas the density of ice at $-10^{\circ} \mathrm{C}$ is 0.920 g / mL. If a $300 . \mathrm{mL}$ container is filled with pure water at $25^{\circ} \mathrm{C}$ and then frozen at $-10^{\circ} \mathrm{C}$, what volume will the solid occupy?
A. 280 mL
B. 320 mL
C. 275 mL
D. 325 mL
E. 350 mL
25. What IUPAC name best describes the following molecule?

A. 2-Ethylpropane
B. Pentane
C. 1,1,2-Trimethylethane
D. 2-Methylbutane
E. 1,1-Dimethylpropane
26. Which of the following has the largest radius?
A. F^{-}
B. O^{2-}
C. Na^{+}
D. Mg^{2+}
E. Ne
27. Consider the following equilibrium:

$$
\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{ClBr}(\mathrm{~g})
$$

Chlorine gas and bromine gas react when placed in a closed vessel. As the reaction proceeds to equilibrium, the rate of the reverse reaction
A. increases as the concentration of products increases.
B. decreases as the concentration of products decreases.
C. increases as the concentration of products decreases.
D. decreases as the concentration of products increases.
E. increases as the concentration of products stays the same.
28. Which of the following describes all systems in chemical equilibrium?
A. The concentration of reactants and products is equal.
B. The reactants and products are present in the same ratio as the balanced equation.
C. The mass of the reactants equals the mass of the products.
D. The rate of the forward reaction equals the rate of the reverse reaction.
E. The activation energy is the same for the forward and reverse reactions.
29. What is the correct name for $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}$?
A. manganese(III) nitrite
B. magnesium(II) nitrate
C. manganese(II) nitrite
D. manganese(II) nitrate
E. manganic nitrate
30. Under certain conditions, the average rate of appearance of oxygen gas in the reaction:

$$
2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})
$$

is 4.0 torr/s. What is the average rate expressed in units torr/s for the disappearance of O_{3} ?
A. 1.2
B. 2.7
C. 4.0
D. 6.0
E. 9.0
31. Which is not a plausible excited state electron configuration for Aluminum ($\left.{ }_{13} \mathrm{Al}\right)$?
A. $1 s^{2} 2 s^{2} 2 p^{5} 3 s^{2} 3 p^{2}$
B. $[\mathrm{Ne}] 3 s^{2} 3 p^{1}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$
D. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1} 3 p^{2}$
E. Answers B and C
32. What volume of a 0.500 M of an aqueous solution of FeCl_{3} is needed to prepare $250 . \mathrm{mL}$ of solution that has a chloride concentration of 0.100 M ?
A. 12.5 mL
B. 50.0 mL
C. 25.0 mL
D. 16.7 mL
E. 100 mL
33. What mass of ethylene glycol, $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, must be added to 3.60 kg of water to lower the freezing point of the water from $-5.00^{\circ} \mathrm{C}$ to $-23.0^{\circ} \mathrm{C}$? ($K_{f p}$ for water is $-1.86^{\circ} \mathrm{C} / \mathrm{m}$)
A. 64.8 g
B. 121 g
C. 1250 g
D. 1620 g
E. 2170 g
34. Aluminum carbide $\left(\mathrm{Al}_{4} \mathrm{C}_{3}\right)$ reacts with water to produce methane $\left(\mathrm{CH}_{4}\right)$. If 7.85 g of methane were produced in 40.1% yield, how much aluminum carbide did the reaction start with?

$$
\mathrm{Al}_{4} \mathrm{C}_{3}(\mathrm{~s})+12 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{CH}_{4}(\mathrm{~g})
$$

A. 58.6 g
B. 27.4 g
C. 70.4 g
D. 175 g
E. 221 g
35. Which of the following chemists proposed the period law stating "the physical and chemical properties of elements are a periodic function of their atomic weights?"
A. Davy
B. Moseley
C. Lavoisier
D. Brand
E. Mendeleev
36. A mixture consisting of 2.00 moles of $\mathrm{PCl}_{5}, 1.50$ moles of Cl_{2}, and 4.00 moles of PCl_{3} in a 5.00 L vessel were allowed to reach equilibrium. At equilibrium, the concentration of Cl_{2} was found to be 0.180 M . Determine the value of the equilibrium constant ($K_{\text {eq }}$) for the reaction:

$$
\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{5}(\mathrm{~g})
$$

A. 2.35×10^{-1}
B. 3.30×10^{1}
C. 1.67
D. 4.25
E. 2.03×10^{-5}
37. The rates of chemical reactions increase with temperature because as the temperature increases:
A. The activation energy decreases.
B. The rate constant increases.
C. The equilibrium constant increases.
D. The concentration of reactants and products increase.
E. The activation energy increases.
38. Which of the following are incorrectly paired?
A. Ne, noble gas
B. Fr, lanthanide
C. I, halogen
D. Sn, metal
E. Ca, alkaline earth metal
39. Arrange the following aqueous solutions in order of increasing vapor pressure at $25^{\circ} \mathrm{C}$: $0.35 \mathrm{~m} \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}$ (ethylene glycol); 0.50 m sugar; 0.20 m KBr ; and $0.20 \mathrm{~m} \mathrm{Na} \mathrm{NO}_{4}$.
A. $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}<$ sugar $<\mathrm{KBr}<\mathrm{Na}_{2} \mathrm{SO}_{4}$
B. $\mathrm{KBr}=\mathrm{Na}_{2} \mathrm{SO}_{4}<\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}<$ sugar
C. $\mathrm{Na}_{2} \mathrm{SO}_{4}<$ sugar $<\mathrm{KBr}<\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}$
D. $\mathrm{Na}_{2} \mathrm{SO}_{4}<\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}<\mathrm{KBr}<$ sugar
E. Sugar $>\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}<\mathrm{KBr}<\mathrm{Na}_{2} \mathrm{SO}_{4}$
40. It takes 35.0 seconds for the concentration of a reactant in a first-order reaction to drop from 0.350 to 0.210 M . How long will it take in seconds for the reaction to be 80% complete?
A. 17.5
B. 110
C. 46.7
D. 35.0
E. 154

