> WYSE - Academic Challenge Chemistry Test Solutions (State) - 2017

Answer	Explanation
1. Answer is D.	Self-explanatory.
2. Answer is A.	Self-explanatory.
3. Answer is E .	$\begin{aligned} & \mathrm{n}=3.00 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{125 \mathrm{~g}}=0.024 \mathrm{~mol} \quad m=\frac{0.024 \mathrm{~mol}}{0.045 \mathrm{~kg}}=0.5333 \frac{\mathrm{~mol}}{\mathrm{~kg}} \\ & \Delta t_{f}=t_{f}^{o}-t_{f}=m \times K_{f}, \quad 178.4^{\circ} \mathrm{C}-t_{f}=40.0^{\circ} \mathrm{C} / \mathrm{m} \times 0.5333 \mathrm{~m} \\ & =21.333^{\circ} \mathrm{C}, \quad t_{f}=157.1^{\circ} \mathrm{C} \end{aligned}$
4. Answer is B.	The negative slope in the plot justifies the answer. $\text { mass } Y$
5. Answer is C.	$\frac{50.208 \mathrm{~g}}{5.6 \mathrm{~mL}}=8.9657 \mathrm{~g} / \mathrm{mL} \rightarrow 9 . \underline{0} .$ (2 significant figure when rounding rules are followed).
6. Answer is E.	The general formula of ethers is R-O-R' where R is an alkyl group.
7. Answer is D.	The trend in the periodic table is - along any period the size increases from right to (\leftarrow) giving $\mathrm{Cl}<\mathrm{S}$. And anions occupy more space than neutral atom, giving $\mathrm{S}<\mathrm{S}^{2-}$.
8. Answer is B.	$Q=\frac{\left[\mathrm{Cl}^{-}\right]^{2}\left[\mathrm{ClO}_{3}^{-}\right]}{\left[\mathrm{ClO}^{-}\right]^{3}}=\frac{0.32 \times(0.50)^{2}}{(0.24)^{3}}=5.8$. Since $Q<K$, the reaction will proceed in the forward direction (left to right).
9. Answer is D.	Both fit in the rules of the nomenclature.
10. Answer is C.	For any species the rate expression is $\frac{-\Delta[\text { conc }]}{\Delta t}$. When applied to this reaction we get the interdependence relationship as $\frac{-\Delta[\mathrm{A}]}{\Delta \mathrm{t}}=\frac{-\Delta[\mathrm{B}]}{5 \Delta \mathrm{t}}=\frac{\Delta[\mathrm{C}]}{4 \Delta \mathrm{t}}$ Comparing the latter two species we get $\frac{\Delta[\mathrm{C}]}{\Delta \mathrm{t}}=\frac{-4 \Delta[\mathrm{~B}]}{5 \Delta \mathrm{t}}$
11. Answer is B.	Isotopes have the same count of protons but different count of neutrons. We have in this answer choice the isotopes ${ }_{24}^{52} \mathrm{Cr}$ and ${ }_{24}^{51} \mathrm{Cr}^{3+}$.
12. Answer is E .	$\begin{gathered} \mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{Ag}^{+}(a q)+\mathrm{CrO}_{4}^{2-}(a q) \\ 2 \mathrm{~s} \quad \mathrm{~s} \quad K_{s p}=(2 \mathrm{~s})^{2} \times \mathrm{s}=4 \mathrm{~s}^{3} \quad \mathrm{~s}=\sqrt[3]{\frac{K_{s p}}{4}} \end{gathered}$
13. Answer is C.	The prevailing pressure on the mountaintop is lower than 1 atm.
14. Answer is B.	$\mathrm{D}=\frac{\mathrm{m}}{\mathrm{~V}} \text {, leading to } \mathrm{V}=\frac{\mathrm{m}}{\mathrm{D}}=\frac{5.00 \mathrm{~g}}{1.59 \mathrm{~g} / \mathrm{mL}}=3.14 \mathrm{~mL}$
15. Answer is A .	Group 1 metals are alkali metals (form base when react with water).
16. Answer is A.	Pure solids and liquids do not show up in the equilibrium expression. Answer A fits the equation when balanced: $2 \mathrm{NaHCO}_{3}(s) \rightleftharpoons \mathrm{Na}_{2} \mathrm{CO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}_{2}(g)$
17. Answer is A.	The formula is CaCl_{2}.
18. Answer is C.	Half-life is the same irrespective of the order in the reaction rate. There are three half-lives represented by the arrows $10.0 \mathrm{~g} \rightarrow 5.0 \mathrm{~g} \rightarrow 2.5 \mathrm{~g} \rightarrow 1.25 \mathrm{~g}$. $\therefore \frac{195 \text { day }}{3 \text { half-life }}=65.0 \text { day for each half-life. }$
19. Answer is D.	The mass of both are about 1 amu .
20. Answer is E .	It fits the mathematical expression of a first order reaction: $\ln [A]_{t}=-\mathrm{kt}+\ln [\mathrm{A}]_{0}$.

21. Answer is E .	Arrhenius definition of acid/base behavior clearly states that the behavior must be in water. Bronsted-Lowry allows for the behavior to be in any environment.
22. Answer is A.	$0.4 \frac{\mathrm{~mol}}{\mathrm{~L}} \mathrm{HCl} \times 0.025 \mathrm{~L}=0.01 \mathrm{~mol} \mathrm{HCl}$ and $0.3 \frac{\mathrm{~mol}}{\mathrm{~L}} \mathrm{NaOH} \times 0.032 \mathrm{~L}=0.0096 \mathrm{~mol} \mathrm{NaOH}$. HCl is in excess amount.
23. Answer is A.	$\mathrm{d}=\frac{\mathrm{P} \times M}{\mathrm{R} \times \mathrm{T}}=\frac{0.750 \mathrm{~atm} \times 60.0 \mathrm{~g} \cdot \mathrm{~mol}^{-1}}{300.15 \mathrm{~K} \times 0.0821 \mathrm{~L} . \mathrm{atm} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}}=1.83 \mathrm{~g} / \mathrm{L}$
24. Answer is C.	Entropy increases from solid to liquid to gas.
25. Answer is B.	An alpha particle $\left.{ }_{2}^{4} \mathrm{He}^{2+}\right]$ is a He atom without electrons ($2+$ charge).
26. Answer is C.	$\begin{aligned} & 87.42 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.01 \mathrm{~g} \mathrm{~N}}=6.241 \mathrm{~mol} \mathrm{~N} \quad 12.58 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.01 \mathrm{~g} \mathrm{H}}=12.48 \mathrm{~mol} \mathrm{H} \\ & \frac{12.48 \mathrm{~mol} \mathrm{H}}{6.241 \mathrm{~mol} \mathrm{~N}}=\frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{~N}}=\mathrm{NH}_{2} \end{aligned}$
27. Answer is A.	The quantum number n for a valence electron of calcium must be 4. This excludes answers B and E . Answer C is not an option because / has to be equal to a number of $0 \rightarrow n-1$. Answer D is not an option because the m_{s} value can't be equal to 0 .
28. Answer is D.	Zinc half-reaction: $\quad \mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$ Vanadium half-reaction: $\mathrm{VO}_{2}{ }^{+}+2 \mathrm{H}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{VO}^{2+}+\mathrm{H}_{2} \mathrm{O}$ Multiply the Vanadium half-reaction by 2 to balance electrons $2 \mathrm{VO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{VO}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$ Add the two half-reactions together to get answer D.
29. Answer is E .	The VSEPR structure of the species is
30. Answer is D.	The answer is self-evident.
31. Answer is D.	The hydrogen phosphate ion $\mathrm{HPO}_{4}{ }^{2-}$. When it reacts with a base, it forms $\mathrm{PO}_{4}{ }^{3-}$. For example: $\mathrm{HPO}_{4}{ }^{2-}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{PO}_{4}{ }^{3-}$
32. Answer is E.	A displacement reaction is a reaction by which an atom, or group of atoms, present in a molecule is displaced by another atom.
33. Answer is B.	$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \therefore \mathrm{~V}_{2}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{P}_{2}}=\frac{100 . \mathrm{mL} \times 150 \mathrm{kPa}}{200 . \mathrm{kPa}}=75.0 \mathrm{~mL}=0.0750 \mathrm{~L}$
34. Answer is C.	Free energy is zero for a reaction at equilibrium.
35. Answer is A.	$\begin{aligned} & \text { mass } \% \text { of } \mathrm{C} \text { in } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=\frac{\text { amu mass of carbon }}{\text { amu mass of } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times 100 \\ & \therefore \frac{6 \times 12.01 \mathrm{amu}}{180.18 \mathrm{amu}} \times 100=40.0 \% \end{aligned}$
36. Answer is B.	17 protons, 18 electrons are present in the chloride ion.
37. Answer is E .	The half-reaction for Ag must be multiplied by 2 to balance the electrons and then the two half-reactions are added together.
38. Answer is D.	The answer is self-explanatory based on the definition of a polar covalent bond
39. Answer is C.	The answer is self-evident.
40. Answer is B.	$0.0150 \mathrm{~L} \mathrm{AlPO}_{4} \times \frac{0.300 \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{2 \mathrm{~mol} \mathrm{AlPO} 4} \times \frac{1000 \mathrm{mmol} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=4.50 \mathrm{mmol} \mathrm{Al}$ Using the other reagent, $0.180 \mathrm{~g} \mathrm{Mg} \times \frac{1 \mathrm{~mol}}{24.3 \mathrm{~g} \mathrm{Mg}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{Mg}} \times \frac{1000 \mathrm{mmol} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=4.94 \mathrm{mmol} \mathrm{Al} .$ Therefore, AIPO_{4} is the limiting reagent and 4.50 mmol Al is the theoretical yield.

