1. Correct Response: E

Young's Modulus has dimensions of force per area, which has SI units $\mathrm{N} / \mathrm{m}^{2}$:

$$
\frac{\mathrm{N}}{\mathrm{~m}^{2}}=\frac{\mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}{\mathrm{~m}^{2}}=\frac{\mathrm{kg}}{\mathrm{~s}^{2} \cdot \mathrm{~m}}
$$

2. Correct Response: B

$$
\left[\frac{P}{A}\right]=\left[\frac{E}{A \cdot t}\right]=\frac{\mathrm{M} \cdot \mathrm{~L}^{2} / \mathrm{T}^{2}}{\mathrm{~L}^{2} \cdot \mathrm{~T}}=\frac{\mathrm{M}}{\mathrm{~T}^{3}}
$$

3. Correct Response: B

Using a coordinate system with the +x -direction toward the east and the +y direction toward the north, the total of the first two displacements is

$$
\left|d_{1}+d_{2}\right|=|(4.00 \mathrm{mi}) \hat{i}+(3.00 \mathrm{mi}) \hat{j}|=\sqrt{(4.00 \mathrm{mi})^{2}+(3.00 \mathrm{mi})^{2}}=5.00 \mathrm{mi}
$$

The average speed is the total path length divided by the total duration,

$$
\bar{v}=\frac{\left|d_{1}\right|+\left|d_{2}\right|+\left|d_{3}\right|}{t_{1}+t_{2}+t_{3}}=\frac{4.00 \mathrm{mi}+3.00 \mathrm{mi}+5.00 \mathrm{mi}}{1.00 \mathrm{hr}+0.750 \mathrm{hr}+1.667 \mathrm{hr}}=3.51 \mathrm{mi} / \mathrm{hr}
$$

4. Correct Response: C

$$
v_{f}^{2}=v_{i}^{2}+2 a\left(x-x_{0}\right) \Rightarrow x-x_{0}=\frac{v_{f}^{2}-v_{i}^{2}}{2 a}=\frac{(1.00 \mathrm{~m} / \mathrm{s})^{2}-(3.00 \mathrm{~m} / \mathrm{s})^{2}}{2\left(-0.200 \mathrm{~m} / \mathrm{s}^{2}\right)}=20.0 \mathrm{~m}
$$

5. Correct Response: E

$$
x_{f}=x_{i}+v_{i} t+\frac{1}{2} a t^{2}
$$

In this case,

$$
x_{f}=x_{i} \Rightarrow 0=v_{i} t+\frac{1}{2} a t^{2} \Rightarrow t=0 \quad \text { or } \quad t=-\frac{2 v_{i}}{a}=-\frac{2(3.00 \mathrm{~m} / \mathrm{s})}{-0.200 \mathrm{~m} / \mathrm{s}^{2}}=30.0 \mathrm{~s}
$$

6. Correct Response: D

Using a coordinate system with the +x axis to the East and the +y axis to the North,

$$
\begin{aligned}
& \vec{v}_{\text {boatto bank }}=\vec{v}_{\text {boatto river }}+\vec{v}_{\text {river to bank }} \Rightarrow \vec{v}_{\text {boatto river }}=\vec{v}_{\text {boatto bank }}-\vec{v}_{\text {river to bank }} \\
& \Rightarrow \quad \vec{v}_{\text {boatto river }}=12.0 \mathrm{~m} / \mathrm{s} \hat{\mathbf{i}}-5.00 \mathrm{~m} / \mathrm{s} \hat{\mathbf{j}} \Rightarrow v_{\text {boatto river }}=\sqrt{(12.0 \mathrm{~m} / \mathrm{s})^{2}+(5.00 \mathrm{~m} / \mathrm{s})^{2}}=13.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

7. Correct Response: E

Using a coordinate system with horizontal as the x direction and vertical upward as the y direction,

$$
\begin{aligned}
& v_{y}^{2}=v_{0 y}^{2}+2 a_{y}\left(y-y_{0}\right) \\
& \Rightarrow v_{0 y}=\sqrt{v_{y}^{2}-2 a_{y}\left(y-y_{0}\right)}=\sqrt{0-2\left(-9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(30.0 \mathrm{~m})}=24.25 \mathrm{~m} / \mathrm{s} \\
& 0=y-y_{0}=v_{0 y} t+\frac{1}{2} a_{y} t^{2} \Rightarrow t=0 \quad \text { or } \quad t=-\frac{2 v_{0 y}}{a_{y}}=-\frac{2(24.25 \mathrm{~m} / \mathrm{s})}{-9.80 \mathrm{~m} / \mathrm{s}^{2}}=4.949 \mathrm{~s} \\
& \tan \theta_{0}=\frac{v_{0 y}}{v_{0 x}} \Rightarrow v_{0 x}=\frac{v_{0 y}}{\tan \theta_{0}}=\frac{24.25 \mathrm{~m} / \mathrm{s}}{\tan 50.0^{\circ}}=20.35 \mathrm{~m} / \mathrm{s} \\
& x-x_{0}=v_{0 x} t=(20.35 \mathrm{~m} / \mathrm{s})(4.949 \mathrm{~s})=101 \mathrm{~m}
\end{aligned}
$$

8. Correct Response: D

Using the same coordinate system as in the previous situation,

$$
\begin{aligned}
& v_{y}^{2}-v_{0 y}^{2}=2 a\left(y-y_{0}\right) \text { and } v_{0 y}=v_{0} \sin \theta_{0} \Rightarrow \\
& \Rightarrow \quad v_{0}=\frac{\sqrt{v_{y}^{2}-2 a\left(y-y_{0}\right)}}{\sin \theta_{0}}=\frac{\sqrt{0^{2}-2\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(30.0 \mathrm{~m})}}{\sin 50.0^{\circ}}=31.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

9. Correct Response: A

$$
\begin{aligned}
& F=\frac{\Delta p}{\Delta t}=m_{\text {cart }} a_{\text {cart }}+m_{\text {person }} a_{\text {person }}+m_{\text {block }} a_{\text {block }} \Rightarrow a_{\text {cart }}=\frac{F-m_{\text {person }} a_{\text {person }}-m_{\text {block }} a_{\text {block }}}{m_{\text {cart }}} \\
& \Rightarrow a_{\text {cart }}=\frac{1200 \mathrm{~N}-(100 \mathrm{~kg})\left(2.00 \mathrm{~m} / \mathrm{s}^{2}\right)-(200 \mathrm{~kg})\left(2.00 \mathrm{~m} / \mathrm{s}^{2}\right)}{800 \mathrm{~kg}}=0.750 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

10. Correct Response: B

The only horizontal component of the force on the 6.00 kg block is the 30.0 N tension force. The horizontal acceleration of the 6.00 kg block is

$$
a=\frac{F}{m}=\frac{30.0 \mathrm{~N}}{6.00 \mathrm{~kg}}=5.00 \mathrm{~m} / \mathrm{s}^{2}
$$

The block of mass m has the same magnitude acceleration, but in the downward direction. The total vertical force on that block is the upward tension force and the downward gravitational force. By Newton's $2^{\text {nd }}$ Law,

$$
30.0 \mathrm{~N}-m g=m a \Rightarrow m=\frac{30.0 \mathrm{~N}}{a+g}=\frac{30.0 \mathrm{~N}}{-5.00 \mathrm{~m} / \mathrm{s}^{2}+9.80 \mathrm{~m} / \mathrm{s}^{2}}=6.25 \mathrm{~kg}
$$

11. Correct Response: A

Using a coordinate system with the $+x$-axis downhill parallel to the incline,

$$
\begin{aligned}
& \sum F_{x}=m a_{x} \Rightarrow F \sin 25^{\circ}+m g \sin 25^{\circ}=m a_{x} \Rightarrow F=\frac{m a_{x}}{\sin 25^{\circ}}-m g \\
& \Rightarrow \quad F=\frac{\left(8.00 \mathrm{~N} / 9.80 \mathrm{~m} / \mathrm{s}^{2}\right)\left(6.00 \mathrm{~m} / \mathrm{s}^{2}\right)}{\sin 25^{\circ}}-(8.00 \mathrm{~N})=3.59 \mathrm{~N}
\end{aligned}
$$

12. Correct Response: C

$$
\sum F_{x}=m a_{x}=0 \Rightarrow-F_{\text {applied }}+F \sin 25^{\circ}+m g \sin 25^{\circ}=m a_{x}=0
$$

But from problem 11,

$$
\begin{aligned}
& F \sin 25^{\circ}+m g \sin 25^{\circ}=m\left(6.00 \mathrm{~m} / \mathrm{s}^{2}\right) \Rightarrow-F_{\text {applied }}+m\left(6.00 \mathrm{~m} / \mathrm{s}^{2}\right)=0 \\
& \quad \Rightarrow \quad F_{\text {applied }}=m\left(6.00 \mathrm{~m} / \mathrm{s}^{2}\right)=\frac{8.00 \mathrm{~N}}{9.80 \mathrm{~m} / \mathrm{s}^{2}}\left(6.00 \mathrm{~m} / \mathrm{s}^{2}\right)=4.90 \mathrm{~N}
\end{aligned}
$$

13. Correct Response: B

There are no external forces acting on the system, so the center of mass moves with constant velocity. From the initial conditions, the center of mass velocity is

$$
\begin{gathered}
v_{c m}=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}=\frac{(3.00 \mathrm{~kg})(4.00 \mathrm{~m} / \mathrm{s})+(2.00 \mathrm{~kg})(-3.00 \mathrm{~m} / \mathrm{s})}{(3.00 \mathrm{~kg})+(2.00 \mathrm{~kg})}=1.20 \mathrm{~m} / \mathrm{s} \\
x_{c m}-x_{0 c m}=v_{c m} t=(1.20 \mathrm{~m} / \mathrm{s})(5.00 \mathrm{~s})=6.00 \mathrm{~m}
\end{gathered}
$$

14. Correct Response: A

In a perfectly elastic collision, the total kinetic energy is conserved.

$$
\begin{aligned}
& \frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2} \Rightarrow v_{2 f}=\sqrt{\frac{m_{1}}{m_{2}}\left(v_{1 i}^{2}-v_{1 f}^{2}\right)+v_{2 i}^{2}} \\
& \Rightarrow v_{2 f}=\sqrt{\frac{5.00 \mathrm{~kg}}{4.00 \mathrm{~kg}}\left([30.0 \mathrm{~m} / \mathrm{s}]^{2}-[10.0 \mathrm{~m} / \mathrm{s}]^{2}\right)+0}=31.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

15. Correct Response: C

The metric prefix pico is equivalent to 10^{-12}.
16. Correct Response: B

$$
P=\frac{W}{t}=\frac{\Delta K}{t}=\frac{600 \mathrm{~J}}{12.0 \mathrm{~s}}=50.0 \mathrm{~W}
$$

17. Correct Response: B

$$
\begin{aligned}
& T-m_{1} g=m_{1} a \text { and } T-m_{2} g=-m_{2} a \\
& \quad \Rightarrow \quad T=\frac{2 m_{1} m_{2}}{m_{1}+m_{2}} g=\frac{2(4.00 \mathrm{~kg})(6.00 \mathrm{~kg})}{4.00 \mathrm{~kg}+6.00 \mathrm{~kg}}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=47.0 \mathrm{~N}
\end{aligned}
$$

18. Correct Response: E

The entire original piece can be considered two masses, the mass m_{1} that ends up with the hole in it and the mass m_{2} circular piece that is moved.

$$
\vec{r}_{c m}=\frac{\sum m_{i} \vec{r}_{i}}{\sum m_{i}}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{m_{1}+m_{2}}=\frac{(10.0 \mathrm{~kg})(\overrightarrow{0})+(2.00 \mathrm{~kg})(3.00 \mathrm{~m} \hat{\mathbf{i}}+2.00 \mathrm{~m} \hat{\mathbf{j}})}{10.0 \mathrm{~kg}+2.00 \mathrm{~kg}}=0.500 \mathrm{~m} \hat{\mathbf{i}}+0.333 \mathrm{~m} \hat{\mathbf{j}}
$$

19. Correct Response: D

Assuming a Cartesian coordinate system with positive x horizontally to the right and positive y vertically downward. On the 45.0° line, the x coordinate is equal to the y coordinate.

$$
\begin{aligned}
& x=v_{0 x} t=v_{0 y} t+\frac{1}{2} a t^{2} \Rightarrow t=2 \frac{v_{0 x}-v_{0 y}}{a}=2 \frac{30.0 \mathrm{~m} / \mathrm{s}-0.00 \mathrm{~m} / \mathrm{s}}{9.80 \mathrm{~m} / \mathrm{s}^{2}}=6.122 \mathrm{~s} \\
& \Rightarrow \quad x=v_{0 x} t=(30.0 \mathrm{~m} / \mathrm{s})(6.122 \mathrm{~s})=184 \mathrm{~m}
\end{aligned}
$$

20. Correct Response: C

Calculate the moment of inertia of a solid circular plate of the same density and subtract the moment of inertia of four circles that are cut from the plate.

$$
I=I_{\text {solid }}-4 I_{\text {cutout }}=\frac{1}{2} m_{\text {solid }} R^{2}-4\left(\frac{1}{2} m_{\text {cutout }} R_{\text {cut-out }}^{2}+m_{\text {cutout }}\left[\frac{2}{3} R\right]^{2}\right)
$$

The mass of a solid circular plate of the same density and radius R as the object shown is

$$
\begin{aligned}
& m_{\text {solid }}=\pi R^{2} \sigma=\pi R^{2} \frac{M}{\pi R^{2}-4 \pi\left(\frac{1}{3} R\right)^{2}}=\frac{9}{5} M \quad \text { and } \quad m_{\text {cut-out }}=\pi\left(\frac{1}{3} R\right)^{2} \sigma=\frac{1}{9} m_{\text {solid }}=\frac{1}{5} M \\
& \Rightarrow \quad I=\frac{1}{2}\left(\frac{9}{5} M\right) R^{2}-4\left(\frac{1}{2}\left[\frac{1}{5} M \llbracket \frac{1}{3} R\right]^{2}+\left[\frac{1}{5} M \llbracket \frac{2}{3} R\right]^{2}\right)=\left[\frac{9}{10}-4\left\{\frac{1}{90}+\frac{4}{45}\right\} M R^{2}=\frac{1}{2} M R^{2}\right.
\end{aligned}
$$

21. Correct Response: B

$$
\begin{aligned}
& \frac{G m_{\text {star }} m_{\text {planet }}}{R^{2}}=m_{\text {planet }} a=m_{\text {planet }} \omega^{2} R=m_{\text {planet }} \frac{4 \pi^{2}}{T^{2}} R \Rightarrow \\
& m_{\text {star }}=\frac{4 \pi^{2}}{G T^{2}} R^{3}=\frac{4 \pi^{2}\left(6.00 \times 10^{11} \mathrm{~m}\right)^{3}}{\left(6.673 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)(20.0 \mathrm{yr})^{2}\left(3.156 \times 10^{7} \mathrm{~s} / \mathrm{yr}\right)^{2}}=3.21 \times 10^{29} \mathrm{~kg}
\end{aligned}
$$

22. Correct Response: C

$$
P V=N k T \Rightarrow \frac{P_{2} V_{2}}{P_{1} V_{1}}=\frac{N T_{2}}{N T_{1}} \Rightarrow T_{2}=\frac{P_{2} V_{2}}{P_{1} V_{1}} T_{1}=\frac{(200 \mathrm{kPa})\left(5.00 \mathrm{~m}^{3}\right)}{(300 \mathrm{kPa})\left(1.00 \mathrm{~m}^{3}\right)} T_{1}=3.33 T_{1}
$$

23. Correct Response: E

Work done by a gas is the area below the PV curve. That area can be partitioned into two trapezoids, one with a base from $1.0 \mathrm{~m}^{3}$ to $2.0 \mathrm{~m}^{3}$ and the second with a base from $2.0 \mathrm{~m}^{3}$ to $5.0 \mathrm{~m}^{3}$

$$
\begin{aligned}
W & =\frac{1}{2}\left(300 \times 10^{3} \mathrm{~Pa}+600 \times 10^{3} \mathrm{~Pa}+\right)\left(1.00 \mathrm{~m}^{3}\right)+\frac{1}{2}\left(600 \times 10^{3} \mathrm{~Pa}+200 \times 10^{3} \mathrm{~Pa}+\right)\left(3.00 \mathrm{~m}^{3}\right) \\
& =1.65 \times 10^{6} \mathrm{~J}
\end{aligned}
$$

24. Correct Response: C

$$
R_{e q}=4.00 \Omega=2.00 \Omega+\frac{R(6.00 \Omega)}{R+6.00 \Omega} \Rightarrow R=\frac{(4.00 \Omega)(6.00 \Omega)-(2.00 \Omega)(6.00 \Omega)}{6.00 \Omega+2.00 \Omega-4.00 \Omega}=3.00 \Omega
$$

25. Correct Response: B

$$
\begin{aligned}
Z & =\sqrt{R^{2}+(\omega L-1 / \omega C)^{2}} \\
& =\sqrt{(9.00 \Omega)^{2}+\left[\left(1.20 \times 10^{3} \mathrm{~s}^{-1}\right)\left(30.0 \times 10^{-3} \mathrm{H}\right)-1 /\left(\left(1.20 \times 10^{3} \mathrm{~s}^{-1}\right)\left(20.0 \times 10^{-6} \mathrm{~F}\right)\right)\right]^{2}}=10.6 \Omega
\end{aligned}
$$

26. Correct Response: D

$$
\sum \vec{F}=0 \Rightarrow q E-m g=0 \Rightarrow g=\frac{q E}{m}=\frac{\left(3.00 \times 10^{-3} \mathrm{C}\right)(4000 \mathrm{~V} / \mathrm{m})}{2.00 \mathrm{~kg}}=6.00 \mathrm{~m} / \mathrm{s}^{2}
$$

27. Correct Response: B

$$
\begin{aligned}
& m \lambda=\frac{d y}{L} \Rightarrow y=\frac{m \lambda L}{d} \Rightarrow y_{2}-y_{-3}=[(2)-(-3)] \frac{\lambda L}{d} \\
& \Rightarrow d=\frac{5 \lambda L}{y_{2}-y_{-3}}=\frac{5\left(500 \times 10^{-9} \mathrm{~m}\right)(3.00 \mathrm{~m})}{\left(7.00 \times 10^{-3} \mathrm{~m}\right)}=1.07 \times 10^{-3} \mathrm{~m}=1.07 \mathrm{~mm}
\end{aligned}
$$

28. Correct Response: A

$$
\frac{1}{f_{2}}=\frac{1}{s_{2}}+\frac{1}{s_{2}^{\prime}} \Rightarrow s_{2}=\frac{f s_{2}^{\prime}}{s_{2}^{\prime}-f}=\frac{(-80.0 \mathrm{~cm})(2.00 \mathrm{~m}-60.0 \mathrm{~cm})}{(2.00 \mathrm{~m}-60.0 \mathrm{~cm})-(-80.0 \mathrm{~cm})}=-50.91 \mathrm{~cm}
$$

Therefore, the image from the first lens is at $x=60.0 \mathrm{~cm}+50.91 \mathrm{~cm}=110.91 \mathrm{~cm}$.

$$
\frac{1}{f_{1}}=\frac{1}{s_{1}}+\frac{1}{s_{1}^{\prime}} \Rightarrow s_{1}=\frac{f s_{1}^{\prime}}{s_{1}^{\prime}-f}=\frac{(40.0 \mathrm{~cm})(110.91 \mathrm{~cm}-10.0 \mathrm{~cm})}{(110.91 \mathrm{~cm}-10.0 \mathrm{~cm})-(40.0 \mathrm{~cm})}=66.27 \mathrm{~cm}
$$

The source is 66.27 cm from the lens located at 10.0 cm , so the \times position of the source is

$$
x_{\text {source }}=10.0 \mathrm{~cm}-66.27 \mathrm{~cm}=-56.3 \mathrm{~cm}
$$

29. Correct Response: C

$$
\begin{aligned}
& \sum F=0 \Rightarrow F_{\text {buoyant }}-m g=0 \Rightarrow \rho_{\text {fluid }} g V_{\text {submerged }}-\rho_{\text {cylinder }} g V_{\text {cylinder }}=0 \\
& \Rightarrow \quad \rho_{\text {cylinder }}=\frac{V_{\text {submerged }}}{V_{\text {cylinder }}} \rho_{\text {fluid }}=\frac{\frac{2}{3} \pi R^{2} L+2\left(\frac{1}{2} R \cos 60^{\circ} R \sin 60^{\circ}\right) L}{\pi R^{2} L} \rho_{\text {fluid }}=0.804 \rho_{\text {fluid }}
\end{aligned}
$$

30. Correct Response: B

$$
\begin{aligned}
& P_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}+\frac{1}{2} \rho v_{2}^{2} \quad \text { and } A_{1} v_{1}=A_{2} v_{2} \Rightarrow v_{2}=\frac{A_{1}}{A_{2}} v_{1}=\frac{\pi R_{1}^{2}}{\pi R_{2}^{2}} v_{1} \\
& \Rightarrow \quad \rho \\
& \Rightarrow \frac{2\left(P_{1}-P_{2}\right)}{v_{2}^{2}-v_{1}^{2}}=\frac{2\left(P_{1}-P_{2}\right)}{v_{1}^{2}\left(R_{1}^{4} / R_{2}^{4}-1\right)}=\frac{2\left(2.00 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)}{(40.0 \mathrm{~m} / \mathrm{s})^{2}\left((20.0 \mathrm{~cm})^{4} /(10.0 \mathrm{~cm})^{4}-1\right)} \\
& \quad=16.7 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

31. Correct Response: E

By definition of change in entropy,

$$
\Delta S=\frac{Q}{T}
$$

32. Correct Response: A

$$
\begin{aligned}
& \Delta U+\Delta K=0 \Rightarrow \\
& -m g \Delta h=\Delta K=m C\left(T_{f}-T_{i}\right) \Rightarrow T_{f}=T_{i}-\frac{g \Delta h}{C}=40.0^{\circ} \mathrm{C}-\frac{\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(-20.0 \mathrm{~m})}{80.0 \mathrm{~J} /\left(\mathrm{kg} \cdot \mathrm{C}^{\circ}\right)}=42.5^{\circ} \mathrm{C}
\end{aligned}
$$

33. Correct Response: E

$$
\begin{aligned}
\Delta E & =E_{1}+E_{2}=\frac{h c}{\lambda_{1}}+\frac{h c}{\lambda_{2}}=h c\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}\right) \\
& =\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(\frac{1}{400 \times 10^{-9} \mathrm{~m}}+\frac{1}{600 \times 10^{-9} \mathrm{~m}}\right)=8.29 \times 10^{-19} \mathrm{~J} \\
\Delta E & =8.29 \times 10^{-19} \mathrm{~J} \times \frac{1 \mathrm{eV}}{1.602 \times 10^{-19} \mathrm{~J}}=5.17 \mathrm{eV}
\end{aligned}
$$

34. Correct Response: B

$$
K=E-m c^{2}=A m c^{2}-m c^{2}=(A-1) m c^{2}
$$

35. Correct Response: C

The neutron is a subatomic particle with a half-life 611 s.

