EXXXF TT ENGINEERING AT ILLINOIS 2018 Academic Challenge CHEMISTRY TEST - SECTIONAL

- This Test Consists of 40 Questions -

Chemistry Test Production Team
Iffat Ali, Lake Land College - Author/Team Leader
Claire Tornow Miller, Lake Land College - Author
Gregory Capitosti, Lake Land College - Reviewer
Sahid L. Rosado Lausell, WYSE - Coordinator of Test Production

GENERAL DIRECTIONS

Please read the following instructions carefully. This is a timed test; any instructions from the test supervisor should be followed promptly.

The test supervisor will give instructions for filling in any necessary information on the answer sheet. Most Academic Challenge sites will ask you to indicate your answer to each question by marking an oval that corresponds to the correct answer for that question. One oval should be marked to answer each question. Multiple ovals will automatically be graded as an incorrect answer.

Be sure ovals are marked as

 , etc.

If you wish to change an answer, erase your first mark completely before marking your new choice.
You are advised to use your time effectively and to work as rapidly as you can without losing accuracy. Do not waste your time on questions that seem too difficult for you. Go on to the other questions, and then come back to the difficult ones later if time remains.
*** Time: 40 Minutes ***
DO NOT OPEN TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO!
©2018 Worldwide Youth in Science and Engineering
"WYSE", "Worldwide Youth in Science and Engineering" and the "WYSE Design" are service marks of and this work is Copyright ©2018 by the Board of Trustees of the University of Illinois at Urbana - Champaign.

All rights reserved.

		Derior			18		0		9	๑		10	\uparrow	1	18		8A
1A																	
$\begin{gathered} \hline 1 \\ H \\ 1.008 \end{gathered}$	2A											3A	4A	5A	6A	7A	$\begin{gathered} 2 \\ \mathrm{He} \\ 4.003 \\ \hline \end{gathered}$
$\begin{gathered} 3 \\ \mathrm{Li} \\ 6.941 \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.012 \end{gathered}$											$\begin{array}{\|c\|} \hline 5 \\ \text { B } \\ 10.81 \\ \hline \end{array}$	$\begin{gathered} 6 \\ \mathrm{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ N \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ 0 \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathrm{~F} \\ 19.00 \end{gathered}$	10 Ne 20.18
$\begin{gathered} 11 \\ \mathrm{Na} \\ 22.99 \\ \hline \end{gathered}$	12 Mg 24.31											$\begin{array}{\|c\|} \hline 13 \\ \mathrm{Al} \\ 26.98 \\ \hline \end{array}$	14 Si 28.09	$\begin{array}{\|c\|} \hline 15 \\ \mathrm{P} \\ 30.97 \\ \hline \end{array}$	$\begin{gathered} 16 \\ \mathrm{~S} \\ 32.07 \\ \hline \end{gathered}$	$\begin{array}{r} 17 \\ \mathrm{Cl} \\ 35.45 \\ \hline \end{array}$	$\begin{array}{r} 18 \\ \mathrm{Ar} \\ 39.95 \\ \hline \end{array}$
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109									
Fr (223)	$\begin{gathered} \mathrm{Ra} \\ \hline 206 \end{gathered}$	$\begin{aligned} & \mathrm{Ac}^{* *} \\ & (227) \end{aligned}$	Unq	Unp	Unh	Uns	Uno	Une									

*Lanthanides	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	1733.0	175.0
$* *$														
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Potentially Useful Information

$$
\begin{aligned}
& \mathrm{q}=\mathrm{m} \bullet \mathrm{C}_{\mathrm{s}} \bullet \Delta \mathrm{~T} \\
& \Delta \mathrm{~T}_{\mathrm{b}}=\mathrm{i} \bullet \mathrm{~K}_{\mathrm{b}} \bullet \mathrm{~m} \\
& \mathrm{P}_{\text {solvent }}=\mathrm{X}_{\text {solvent }} \bullet \mathrm{P}_{\text {solvent }}^{\circ} \\
& \ln \left(\frac{[A]_{t}}{[A]_{0}}\right)=-k t \\
& {[A]_{t}-[A]_{0}=-k t} \\
& \ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{-\Delta H_{r x n}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \mathrm{pH}=\mathrm{pK} \\
& \mathrm{a}
\end{aligned}+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right), ~ \begin{aligned}
& \Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ} \\
& \Delta E=B\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right) \\
& \Delta \mathrm{G}^{\circ}=-\mathrm{nF} \varepsilon^{\circ} \\
& \Pi=M R T \\
& \mathrm{~F}=96485 \mathrm{C} / \mathrm{mol} \\
& \mathrm{R}=0.08206 \mathrm{~L} \text { atm} / \mathrm{mol} \mathrm{~K} ; 8.3145 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \\
& 1.0 \mathrm{~kg}=2.2 \mathrm{lb} \\
& 1.0 \mathrm{in}=2.54 \mathrm{~cm} \\
& 1 \mathrm{lb}=453.59 \mathrm{~g} \\
& \mathrm{C}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \bullet K_{\mathrm{f}} \bullet \mathrm{m}$
$S_{\text {gas }}=k_{H} \bullet P_{\text {gas }}$
$k=A e^{-E a / R T}$
$\frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}=k t$
$\ln \left(\frac{k_{2}}{k_{1}}\right)=\frac{-E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\ln \left(\frac{P_{2}}{P_{1}}\right)=\frac{-\Delta H_{\text {vap }}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$\Delta \mathrm{S}_{\text {surr }}=\frac{-\Delta H_{s y s}}{T}$
$E_{\text {cell }}{ }^{\circ}=E_{\text {red }}{ }^{\circ}+E_{o x}{ }^{\circ}$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$c=\lambda \nu$
$\Delta E=h \nu$
$K_{w}=1.0 \times 10^{-14}$
$B=-2.18 \times 10^{-18} \mathrm{~J}$
$\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$
$1 \mathrm{~atm}=101,325 \mathrm{~Pa}=1.01325 \mathrm{bar}$
$1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2}=0.239 \mathrm{cal}$
$h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

Assume all gases behave ideally unless specifically told to do otherwise Assume all solutions are aqueous and at $25^{\circ} \mathrm{C}$ unless specifically told otherwise Assume all gases are at STP unless specifically told otherwise

Simple Rules for the Solubility of Salts in Water

1. Most nitrates are soluble
2. Most salts containing Group 1 ions or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$are soluble
3. Most chloride, bromide, and iodide salts are soluble except those of $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}$, and $\mathrm{Hg}_{2}{ }^{2+}$.
4. Most sulfates are soluble with the exception of $\mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Hg}_{2}{ }^{2+}$, and Ca^{2+}
5. Most hydroxide salts are only slightly soluble with the exception of Group 1 hydroxides. Group $2\left(\mathrm{Ba}^{2+}\right.$ to $\left.\mathrm{Ca}^{2+}\right)$ are slightly soluble.
6. Most sulfides, carbonates, chromates, and phosphates are only slightly soluble.

> WYSE - Academic Challenge
> Chemistry Test (Sectional) - 2018

1. The concentration of NaOH is 0.50 M . If 20 mL is needed to titrate 35 mL of a monoprotic acid, what is the concentration of the acid?
A. 0.00286 M
B. 0.875 M
C. 0.286 M
D. 0.00875 M
E. 0.055 M
2. Assign the following reaction to one of the reaction classifications given in the response list:

$$
2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{HNO}_{3}
$$

A. exchange
B. combination
C. displacement
D. decomposition
E. precipitation
3. A sample of gas at $80^{\circ} \mathrm{C}$ is cooled by $30^{\circ} \mathrm{C}$ until its final volume is 1.75 L . If the pressure remains constant, what was the initial volume of the gas?
A. 1.75 L
B. 2.8 L
C. 1.91 L
D. 1.60 L
E. 3.20 L
4. What is the enthalpy change for the following reaction?

$$
\begin{gathered}
\mathrm{C}_{8} \mathrm{H}_{18}(\Lambda)+121 / 2 \mathrm{O}_{2}(g) \rightarrow 8 \mathrm{CO}_{2}(g)+9 \mathrm{H}_{2} \mathrm{O}(g) \\
\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}} \text { of } \mathrm{C}_{8} \mathrm{H}_{18}(\Lambda)=-269.7 \mathrm{~kJ} / \mathrm{mol}, \mathrm{CO}_{2}(g)=-393.5 \mathrm{~kJ} / \mathrm{mol}, \mathrm{H}_{2} \mathrm{O}(g)=-241.8 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

A. -365.6 kJ
B. 905.0 kJ
C. -5593.9 kJ
D. 5054.5 kJ
E. -5054.5 kJ
5. The type(s) of radiation that consist(s) of charged particles include
A. only α
B. only β
C. only γ
D. α and β
E. α and γ
6. Glucose has a chemical formula of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$. What is the percent composition of hydrogen in this compound?
A. 12
B. 50
C. 50
D. 20
E. 6.7
7. Certain light energy used to eject an electron from an atom is $1.96 \times 10^{-17} \mathrm{~J}$. What is the frequency of this light?
A. $5.96 \times 10^{14} \mathrm{~s}^{-1}$
B. $-3.55 \times 10^{16} \mathrm{~s}^{-1}$
C. $10.1 \mathrm{~s}^{-1}$
D. $3.38 \times 10^{-17} \mathrm{~s}^{-1}$
E. $2.96 \times 10^{16} \mathrm{~s}^{-1}$
8. In a redox reaction, the oxidizing agent is the substance
A. that contains an element that undergoes a decrease in oxidation number
B. that loses electrons
C. that is oxidized
D. no correct response
E. all are correct answers
9. If a central atom has three bonding pairs and a nonbonding pair of electrons attached to it (refer to the figure), the geometry about the central atom is

A. triangular planar
B. tetrahedral
C. linear
D. trigonal pyramidal
E. octahedral
10. In hydrogen bonding, what could be the hydrogen bond acceptor?
A. A very large molecule
B. The atom in the molecule to which hydrogen is attached
C. A highly electronegative atom with lone pair electrons
D. An exposed hydrogen atom nucleus
E. A metal atom
11. A solution of an acid is mixed with a solution of a base. The neutral mixture that results contains magnesium nitrate $\left(\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}\right)$. This mixture could have resulted from the combination of which of these pairs of solutions?
A. a solution of MgO and a solution of NH_{3}
B. a solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ and a solution of HNO_{3}
C. a solution of MgO and a solution of HNO_{2}
D. a solution of $\mathrm{Mg}(\mathrm{OH})_{2}$ and a solution of NH_{3}
E. a solution of Mg and a solution of NO_{3}
12. If you are provided 200 g of sodium and 250 g of iron(III) oxide, how much of the iron(III) oxide is used up according to the following reaction?

$$
6 \mathrm{Na}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow 3 \mathrm{Na}_{2} \mathrm{O}+2 \mathrm{Fe}
$$

A. 125 g
B. 250 g
C. 231 g
D. 38.5 g
E. 450 g
13. At a factory near the coast (at sea level, where air pressure is 1.0 atm), 1.00 mole of chlorine gas, Cl_{2}, is pumped into a steel tank in a large walk-in refrigerator at $4.0^{\circ} \mathrm{C}$. What is the density of the chlorine gas in this condition?
A. $3.52 \mathrm{~g} / \mathrm{L}$
B. $3.12 \mathrm{~g} / \mathrm{L}$
C. $0.32 \mathrm{~g} / \mathrm{L}$
D. $1.56 \mathrm{~g} / \mathrm{L}$
E. $0.22 \mathrm{~g} / \mathrm{L}$
14. What is the amount of work done when a gas expands from 1.00 L to 3.00 L against a constant external pressure of 1.00 atm ? Use $1 \mathrm{~L}-\mathrm{atm}=101 \mathrm{~J}$.
A. -202 J
B. 101 J
C. -101 J
D. 202 J
E. 404 J
15. There are two isotopes of element " X ". Following is a list of each isotope, their mass and abundance. What is the weighted atomic mass of " X "?

| Isotope Mass (amu)
 $\# 1$ \% Abundance
 $\# 24.96885$ 75.771
 $\# 2$ 36.96590 | | 24.229 |
| :--- | :--- | :--- | :--- |

A. 35.453 amu
B. 49.545 amu
C. 26.496 amu
D. 35.967 amu
E. 36.966 amu
16. What are the values for \boldsymbol{m}_{1} for a "d" orbital?
A. $0,1,2,3,4$
B. $-1,0,1$
C. $0,1,2,3$
D. $-2,-1,0,1,2$
E. $0,1,2$
17. Which of the following statements concerning oxidation and reduction is correct?
A. they cannot occur independently of each other
B. they describe, respectively, the gain and loss of electrons
C. they accompany all chemical changes
D. no correct response
E. all responses are correct
18. The attraction of an atom for a pair of shared electrons is called its
A. covalence
B. valence
C. polarity
D. dipole
E. electronegativity
19. Certain conditions can alter the boiling point of a liquid. To what conditions does the normal boiling point of a liquid refer?
A. The boiling point at normal pressure
B. The boiling point at constant pressure
C. The boiling point at vapor pressure
D. The boiling point at atmospheric pressure
E. The boiling point at vapor pressure

$$
\mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{~g})
$$

A. $2 \mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2}$
B. $3 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}$
C. $15 \mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2}$
D. $15 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}$
E. $2 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}$
21. Organic compounds containing a carbon-oxygen double bond include all of the following except \qquad .
A. aldehyde
B. ether
C. ketone
D. ester
E. none of the above
22. A positive ion is formed as a result of an atom
A. losing one or more protons
B. losing one or more electrons
C. losing one or more neutrons
D. gaining one or more protons
E. gaining one or more electrons
23. A sample of metal weighs 6.25 g . When a student places it into a graduated cylinder containing water, the liquid level rises from 20.25 mL to 28.47 mL . What is the density of the metal?
A. $0.312 \mathrm{~g} / \mathrm{mL}$
B. $0.200 \mathrm{~g} / \mathrm{mL}$
C. $0.309 \mathrm{~g} / \mathrm{mL}$
D. $1.32 \mathrm{~g} / \mathrm{mL}$
E. $0.760 \mathrm{~g} / \mathrm{mL}$
24. The boiling of water is a
A. chemical change because heat is needed for the process to occur.
B. chemical change because a gas (steam) is given off.
C. chemical and physical change.
D. physical change because the gaseous water is chemically the same as the liquid.
E. physical change because the water merely disappears.
25. Calcium reacts with a certain element (X) to form a compound with the general formula CaX . What would the most likely formula be for the compound formed between lithium and element X ?
A. $\mathrm{Li}_{2} \mathrm{X}$
B. LiX_{2}
C. $\mathrm{Li}_{2} \mathrm{X}_{3}$
D. $\mathrm{Li}_{2} \mathrm{X}_{2}$
E. LiX
26. With respect to its electron configuration, an alkali metal atom \qquad .
A. has one electron in its outer shell
B. has two electrons in its outer shell
C. has a filled outer shell
D. is one electron short of having a filled outer shell
E. is two electrons short of having a filled outer shell
27. How many grams of magnesium nitrate are required to produce 250.0 mL of a 0.0750 M solution?
A. 1.61 g
B. 1.39 g
C. 2.19 g
D. 0.800 g
E. 2.78 g
28. What is the osmotic pressure of a 0.075 M solution of sucrose at $18.5^{\circ} \mathrm{C}$?
A. 0.114 atm
B. 1.36 atm
C. 18.0 atm
D. 1.80 atm
E. 11.4 atm
29. For a certain first order reaction, it is found that it takes 156 seconds for the concentration of reactant to fall from 0.100 M to 0.0500 M . How much time would it take for the concentration of reactant to fall from 0.0500 M to 0.0250 M ?
A. 156 s
B. 76.0 s
C. 312 s
D. 12.5 s
E. 89.6 s
30. Nitrogen reacts with hydrogen to form ammonia, according to the following equation:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

At a certain temperature the equilibrium constant is $K_{c}=2.0$. An equilibrium mixture is found to contain concentrations of N_{2} equal to 0.15 M and H_{2} equal to 0.30 M . What is the concentration of NH_{3} in this mixture?
A. $2.7 \times 10^{-2} \mathrm{M}$
B. 0.16 M
C. $8.1 \times 10^{-3} \mathrm{M}$
D. $9.0 \times 10^{-2} \mathrm{M}$
E. $5.2 \times 10^{-3} \mathrm{M}$
31. How many total electrons are present in a nitride ion?
A. 4
B. 7
C. 10
D. 8
E. 5
32. To what decimal position should a measurement be recorded if the smallest markings on the measurement scale are tenths of a centimeter?
A. to the closest centimeter
B. to the tenths of a centimeter
C. to the hundredths of a centimeter
D. to the thousandths of a centimeter
E. the measurement cannot be determined
33. What is the correct formula for ammonium sulfide?
A. $\mathrm{NH}_{4} \mathrm{SO}_{3}$
B. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
C. $\mathrm{N}_{2} \mathrm{~S}_{3}$
D. $\mathrm{NH}_{3} \mathrm{~S}$
E. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$
34. In general, ionization energy \qquad as you go down, and \qquad as you go from left to right across the periodic table.
A. decreases, decreases
B. decreases, increases
C. increases, decreases
D. increases, increases
E. cannot be determined
35. The solubility of a gas in general \qquad with increasing pressure.
A. increases
B. decreases
C. remains the same
D. decreases and then increases
E. In order to determine an answer one must know the identity of the gas in question.
36. Consider the gas-phase equilibrium system represented by the equation:

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftarrows 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

If the forward reaction (left to right) is endothermic, which of the following changes will decrease the equilibrium amount of $\mathrm{H}_{2} \mathrm{O}$?
A. adding more oxygen
B. adding a solid phase catalyst
C. decreasing the volume of the container (the total pressure increases)
D. increasing the temperature at constant pressure
E. adding He gas
37. For the chemical reaction $A \rightarrow C$, a plot of $1 /[A]_{t}$ versus time was found to give a straight line with a positive slope. What is the order of reaction?
A. zeroth
B. first
C. second
D. third
E. such a plot cannot reveal the order of the reaction
38. An atom has an atomic number of 11 and a mass number of 23 . Which of the following statements is correct?
A. It has 11 protons, 11 electrons, 11 neutrons, and is vanadium.
B. It has 11 protons, 12 electrons, 11 neutrons, and is sodium.
C. It has 11 protons, 11 electrons, 12 neutrons, and is sodium.
D. It has 11 protons, 12 electrons, 12 neutrons, and is magnesium.
E. It has 11 protons, 11 electrons, 23 neutrons, and is vanadium.
39. What is the molarity of a NaNO_{3} solution made by diluting 250.0 mL of a 1.60 M solution to a final volume of $400 . \mathrm{mL}$?
A. 1.20 M
B. 1.00 M
C. 0.200 M
D. 0.160 M
E. 2.56 M
40. The rate constant of a first-order process that has a half-life of 225 s is \qquad s^{-1}.
A. 0.693
B. 12.5
C. 1.25
D. 4.44×10^{-3}
E. 3.08×10^{-3}

