WYSE - Academic Challenge

Physics Exam Solutions (Sectional) - 2018

1. Correct Response: B

This is a direct application of Kepler's Third Law,

$$
\begin{gathered}
T=\sqrt{\frac{4 \pi^{2}}{G M_{S}}} a^{3 / 2} \Rightarrow M_{s}=\frac{4 \pi^{2} a^{3}}{G T^{2}} \\
M_{s}=\frac{4 \pi^{2}\left(1.50 \times 10^{11} \mathrm{~m}\right)^{3}}{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(3.15 \times 10^{7} \mathrm{~s}\right)^{2}}=2.01 \times 10^{30} \mathrm{~kg}
\end{gathered}
$$

Note:

$$
T=1.00 \mathrm{yr}=1.00 \mathrm{yr}\left(\frac{365.24 \mathrm{days}}{1.00 \mathrm{yr}}\right)\left(\frac{24.0 \mathrm{hr}}{1.00 \mathrm{day}}\right)\left(\frac{3600 \mathrm{~s}}{1.00 \mathrm{hr}}\right)=3.15 \times 10^{7} \mathrm{~s}
$$

2. Correct Response: C

$$
\begin{gathered}
d=\left|y\left(t_{2}\right)-y\left(t_{1}\right)\right| \Rightarrow \\
d=\left|\left(y_{o}+v_{o} t_{2}+\frac{1}{2} a t_{2}^{2}\right)-\left(y_{o}+v_{o} t_{1}+\frac{1}{2} a t_{1}^{2}\right)\right|=\left|v_{o}\left(t_{2}-t_{1}\right)+\frac{1}{2} a\left(t_{2}^{2}-t_{1}^{2}\right)\right| \Rightarrow \\
d=\left|(0.00 \mathrm{~m} / \mathrm{s})(3.83 \mathrm{~s}-1.31 \mathrm{~s})+\frac{1}{2}\left(6.27 \mathrm{~m} / \mathrm{s}^{2}\right)\left([3.83 \mathrm{~s}]^{2}-[1.31 \mathrm{~s}]^{2}\right)\right|=40.6 \mathrm{~m}
\end{gathered}
$$

3. Correct Response: A

$$
\mathbf{F}_{n e t}=M \mathbf{a} \quad \Rightarrow \quad \mathbf{a}=\frac{\mathbf{F}_{n e t}}{M}
$$

4. Correct Response: C

$$
\begin{gathered}
\mathbf{A}+\mathbf{B}=(1.36 \hat{\mathbf{\imath}}-2.10 \hat{\mathbf{\jmath}})+\left(1.49 \cos 224^{\circ} \hat{\mathbf{\imath}}+1.49 \sin 224^{\circ} \hat{\mathbf{\jmath}}\right)=0.288 \hat{\mathbf{\imath}}-3.14 \hat{\mathbf{\jmath}} \\
|\mathbf{A}+\mathbf{B}|=\sqrt{(\mathbf{A}+\mathbf{B})_{x}^{2}+(\mathbf{A}+\mathbf{B})_{y}^{2}}=\sqrt{(0.288)^{2}+(3.14)^{2}}=3.15 \\
\theta_{\mathbf{A}+\mathbf{B}}=\tan ^{-1} \frac{(\mathbf{A}+\mathbf{B})_{y}}{(\mathbf{A}+\mathbf{B})_{x}}=\tan ^{-1} \frac{-3.14}{0.288}=-85^{\circ}\left(\text { or }+275^{\circ}\right)
\end{gathered}
$$

5. Correct Response: D

$$
a=\sqrt{a_{r}^{2}+a_{t}^{2}}=\sqrt{\left(\frac{v^{2}}{r}\right)^{2}+a_{t}^{2}}=\sqrt{\left(\frac{(15.0 \mathrm{~m} / \mathrm{s})^{2}}{(37.5 \mathrm{~m})}\right)^{2}+\left(8.00 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}}=10.0 \mathrm{~m} / \mathrm{s}^{2}
$$

6. Correct Response: D

$$
\omega=\omega_{o}+\alpha t \quad \Rightarrow \quad \alpha=\left|\frac{\omega-\omega_{o}}{t}\right|=\left|\frac{0.75 \frac{\mathrm{rev}}{\mathrm{~s}} \cdot 2 \pi \frac{\mathrm{rad}}{\mathrm{rev}}-3.00 \frac{\mathrm{rev}}{\mathrm{~s}} \cdot 2 \pi \frac{\mathrm{rad}}{\mathrm{rev}}}{14.3 \mathrm{~s}}\right|=0.989 \frac{\mathrm{rad}}{\mathrm{~s}^{2}}
$$

7. Correct Response: A

$$
\begin{gathered}
W=\Delta K=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{o}^{2}=\frac{1}{2} I\left(\omega_{f}^{2}-\omega_{o}^{2}\right) \\
W=\frac{1}{2}\left(0.0176 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\left\{\left(0.75 \frac{\mathrm{rev}}{\mathrm{~s}} \cdot 2 \pi \frac{\mathrm{rad}}{\mathrm{rev}}\right)^{2}-\left(3.00 \frac{\mathrm{rev}}{\mathrm{~s}} \cdot 2 \pi \frac{\mathrm{rad}}{\mathrm{rev}}\right)^{2}\right\}=-2.93 \mathrm{~J}
\end{gathered}
$$

8. Correct Response: E

$$
\Delta K+\Delta U=0 \quad \Rightarrow \quad \frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{o}^{2}-m g h=0 \quad \Rightarrow \quad v_{f}=\sqrt{2 g h+v_{o}^{2}}
$$

9. Correct Response: B

$$
\begin{gathered}
W=\Delta K \Rightarrow-\mu_{k} m g d=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{o}^{2} \quad \Rightarrow \quad v_{f}=\sqrt{v_{o}^{2}-2 \mu_{k} g d} \Rightarrow \\
v_{f}=\sqrt{(5.23 \mathrm{~m} / \mathrm{s})^{2}-2(0.150)(6.11 \mathrm{~m})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=3.06 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

10. Correct Response: B

$$
W=\int_{\mathbf{r}_{i}}^{\mathbf{r}_{f}} \mathbf{F} \cdot d \mathbf{r}
$$

For the first segment of the motion, the path is parallel to the y axis,

$$
\begin{aligned}
d \mathbf{r}=d y \hat{\mathbf{\jmath}} & \Rightarrow W_{1}=\int_{y_{i}}^{y_{f}} \mathbf{F} \cdot d y \hat{\mathbf{\jmath}}=\int_{y=1.00 \mathrm{~m}}^{y=4.00 \mathrm{~m}}\left\{(3.00 \mathrm{~N} / \mathrm{m}) x \hat{\boldsymbol{\imath}}+\left(1.00 \mathrm{~N} / \mathrm{m}^{2}\right) x y \hat{\mathbf{\jmath}}\right\} \cdot d y \hat{\mathbf{\jmath}} \\
& =\int_{y=1.00 \mathrm{~m}}^{y=4.00 \mathrm{~m}}\left(1.00 \mathrm{~N} / \mathrm{m}^{2}\right) x y d y=\left.\frac{1}{2}\left(1.00 \mathrm{~N} / \mathrm{m}^{2}\right) x y^{2}\right|_{y=1.00 \mathrm{~m}} ^{y=4.00 \mathrm{~m}}= \\
& =\frac{1}{2}\left(1.00 \mathrm{~N} / \mathrm{m}^{2}\right)(1.00 \mathrm{~m})\left[(4.00 \mathrm{~m})^{2}-(1.00 \mathrm{~m})^{2}\right]=7.50 \mathrm{~J}
\end{aligned}
$$

For the second segment of the motion, the path is parallel to the x axis,

$$
\begin{gathered}
d \mathbf{r}=d x \hat{\mathbf{\imath}} \Rightarrow W_{2}=\int_{x_{i}}^{x_{f}} \mathbf{F} \cdot d x \hat{\mathbf{\imath}}=\int_{x=1.00 \mathrm{~m}}^{x=5.00 \mathrm{~m}}\left\{(3.00 \mathrm{~N} / \mathrm{m}) x \hat{\mathbf{\imath}}+\left(1.00 \mathrm{~N} / \mathrm{m}^{2}\right) x y \hat{\mathbf{\jmath}}\right\} \cdot d x \hat{\mathbf{\imath}} \\
=\int_{x=1.00 \mathrm{~m}}^{x=5.00 \mathrm{~m}}(3.00 \mathrm{~N} / \mathrm{m}) x d x=\left.\frac{1}{2}(3.00 \mathrm{~N} / \mathrm{m}) x^{2}\right|_{x=1.00 \mathrm{~m}} ^{x=5.00 \mathrm{~m}}= \\
=\frac{1}{2}(3.00 \mathrm{~N} / \mathrm{m})\left[(5.00 \mathrm{~m})^{2}-(1.00 \mathrm{~m})^{2}\right]=36.0 \mathrm{~J} \\
W=W_{1}+W_{2}=7.5 \mathrm{~J}+36.0 \mathrm{~J}=43.5 \mathrm{~J}
\end{gathered}
$$

11. Correct Response: B

$$
\omega=\frac{2 \pi}{T}=\sqrt{\frac{g}{l}} \Rightarrow g=\frac{4 \pi^{2} l}{T^{2}}=\frac{4 \pi^{2}(1.78 \mathrm{~m})}{(6.94 \mathrm{~s})^{2}}=1.46 \mathrm{~m} / \mathrm{s}^{2}
$$

12. Correct Response: C

$$
\begin{gathered}
m_{1} v_{1}+m_{2} v_{2}=\left(m_{1}+m_{2}\right) v_{f} \Rightarrow \\
v_{f}=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}}=\frac{(785 \mathrm{~kg})(8.21 \mathrm{~m} / \mathrm{s})+(2410 \mathrm{~kg})(4.67 \mathrm{~m} / \mathrm{s})}{785 \mathrm{~kg}+2410 \mathrm{~kg}}=5.54 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

13. Correct Response: C

$$
\frac{P_{1} V_{1}}{P_{2} V_{2}}=\frac{n_{1} T_{1}}{n_{2} T_{2}} \Rightarrow P_{2}=\frac{P_{1} V_{1} n_{2} T_{2}}{V_{2} n_{1} T_{1}}=\frac{(1.33 \mathrm{~atm})([500+273.15] \mathrm{K})}{([200+273.15] \mathrm{K})}=2.17 \mathrm{~atm}
$$

14. Correct Response: E

$$
U=\frac{3}{2} n R T \quad \Rightarrow
$$

$$
\Delta U=\frac{3}{2} n R \Delta T=\frac{3}{2}(3.00 \text { moles })(8.3145 \mathrm{~J} /(\text { mole } \cdot \mathrm{K}))([500-200] \mathrm{K})=11.2 \mathrm{~kJ}
$$

15. Correct Response: B

First, using the right hand rule, the magnetic field direction at the location of interest created by both currents is in the positive y direction.

$$
\begin{gathered}
\mathbf{B}=\frac{\mu_{o} I_{1}}{2 \pi d_{1}} \hat{\mathbf{\jmath}}+\frac{\mu_{o} I_{2}}{2 \pi d_{2}} \hat{\mathbf{\jmath}}=\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(0.768 \mathrm{~A})}{2 \pi\left(1.56 \times 10^{-2} \mathrm{~m}\right)} \hat{\mathbf{\jmath}}+\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(0.768 \mathrm{~A})}{2 \pi\left(1.56 \times 10^{-2} \mathrm{~m}\right)} \hat{\mathbf{\jmath}} \\
\mathbf{B}=1.97 \times 10^{-5} \mathrm{~T} \hat{\mathbf{j}}
\end{gathered}
$$

16. Correct Response: E

In General Relativity, the surface of the sphere of radius equal to the Schwarzschild radius is known as the event horizon.
17. Correct Response: D

Gamma rays are electromagnetic radiation and therefore energetic photons.
18. Correct Response: E

$$
p=m v \Rightarrow m=\frac{p}{v} \Rightarrow \quad \text { units of mass }=\frac{\text { units of momentum }}{\text { units of velocity }}=\frac{\text { su }}{\text { duper }}
$$

19. Correct Response: B

Using a coordinate system with the x-direction toward the east and the y-direction toward the north,

$$
\begin{gathered}
d_{x}=d \cos \theta \Rightarrow d=\frac{d_{x}}{\cos \theta} \\
d_{y}=d \sin \theta=\frac{d_{x} \sin \theta}{\cos \theta}=\frac{(200 . \mathrm{miles}) \sin 50.0^{\circ}}{\cos 50.0^{\circ}}=238 \mathrm{miles}
\end{gathered}
$$

20. Correct Response: E

Using East as the positive x coordinate,

$$
\begin{gathered}
v_{f}^{2}-v_{i}^{2}=2 a\left(x_{f}-x_{i}\right) \Rightarrow \\
a=\frac{v_{f}^{2}-v_{i}^{2}}{2\left(x_{f}-x_{i}\right)}=\frac{(-8.00 \mathrm{~m} / \mathrm{s})^{2}-(4.00 \mathrm{~m} / \mathrm{s})^{2}}{2(-2.00 \mathrm{~m} / \mathrm{s}-0.00 \mathrm{~m} / \mathrm{s})}=-12.0 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

21. Correct Response: A

Using East as the positive x coordinate,

$$
W=\mathbf{F} \cdot \mathbf{d}=(20.0 \mathrm{~N})(-2.00 \mathrm{~m}-0.00 \mathrm{~m})=-40.0 \mathrm{~J}
$$

22. Correct Response: E

Either recall

$$
\text { Range }=\frac{2 v_{0}^{2} \cos \theta \sin \theta}{g}
$$

or derive this range equation. Using x as the horizontal component and upward y as the vertical component,

$$
y=y_{0}+v_{y 0} t+\frac{1}{2} a_{y} t^{2}=y_{0}+v_{0} \sin \theta t-\frac{1}{2} g t^{2}
$$

As $y=y_{0}$,

$$
t=0 \quad \text { or } \quad t=\frac{2 v_{0} \sin \theta}{g}
$$

The horizontal component of motion is constant velocity motion,

$$
x=x_{0}+v_{0 x} t \Rightarrow \text { Range }=x-x_{0}=v_{0} \cos \theta t=\frac{2 v_{0}^{2} \cos \theta \sin \theta}{g}
$$

23. Correct Response: A

Using a coordinate system with horizontally to the right as the $+x$-direction and vertically upward as the $+y$-direction,

$$
\begin{gathered}
\sum F_{y}=m a_{y} \Rightarrow-m g-(20.0 \mathrm{~N}) \sin 30.0^{\circ}+F_{N}=0 \Rightarrow \\
F_{N}=m g+(20.0 \mathrm{~N}) \sin 30.0^{\circ}=(5.00 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)+(20.0 \mathrm{~N}) \sin 30.0^{\circ}=59.0 \mathrm{~N} \\
\sum F_{x}=m a_{x} \Rightarrow(20.0 \mathrm{~N}) \cos 30.0^{\circ}-\mu F_{N}=m a_{x} \Rightarrow
\end{gathered}
$$

$$
\mu=\frac{(20.0 \mathrm{~N}) \cos 30.0^{\circ}-m a_{x}}{F_{N}}=\frac{(20.0 \mathrm{~N}) \cos 30.0^{\circ}-(5.00 \mathrm{~kg})\left(2.00 \mathrm{~m} / \mathrm{s}^{2}\right)}{59.0 \mathrm{~N}}=0.124
$$

24. Correct Response: B

$$
\begin{gathered}
\sum F_{x}=m a_{x} \Rightarrow(20.0 \mathrm{~N}) \cos 30.0^{\circ}-\mu F_{N}+F_{a}=m a_{x}=0 \Rightarrow \\
F_{a}=-\left\{(20.0 \mathrm{~N}) \cos 30.0^{\circ}-\mu F_{N}\right\}=-m a_{n o F_{a}}=-(5.00 \mathrm{~kg})\left(2.00 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=-10.0 \mathrm{~N}
\end{gathered}
$$

25. Correct Response: D

$$
\begin{aligned}
\tau=r_{1} F_{1} \sin \theta_{1} & +r_{2} F_{2} \sin \theta_{2}=(0.60 \mathrm{~m})(60.0 \mathrm{~N}) \sin \left(-70.0^{\circ}\right)+(1.00 \mathrm{~m})(80.0 \mathrm{~N}) \sin \left(245^{\circ}\right) \\
& =-106 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

26. Correct Response: D

Using a coordinate system with vertically upward as the $+y$ direction and the T as the magnitude of the tension force,

$$
\sum F_{y 1}=T-M_{1} g=M_{1} a_{1} \text { and } \quad \sum F_{y 2}=2 T-M_{2} g=M_{2} a_{2}
$$

If M_{1} moves, then M_{2} will move one-half the distance and in the opposite vertical direction $\Rightarrow a_{2}=-\frac{1}{2} a_{1}$. Using this relationship and solving the left equation above for T and substituting for T in the right equation
 above,

$$
2\left(M_{1} a_{1}+M_{1} g\right)-M_{2} g=-\frac{1}{2} M_{2} a_{1}
$$

Solving for a_{1},

$$
a_{1}=-\frac{4 M_{1}-2 M_{2}}{4 M_{1}+M_{2}} g \quad \text { or } \quad\left|a_{1}\right|=\left|\frac{4 M_{1}-2 M_{2}}{4 M_{1}+M_{2}}\right| g
$$

27. Correct Response: D

$$
0=\Delta K+\Delta U=K_{f}-K_{i}+M_{1} g \Delta h_{1}+M_{2} g \Delta h_{2}
$$

As in previous solution, M_{2} will move one-half the distance and in the opposite vertical direction to $M_{1} \Rightarrow \Delta h_{2}=-\frac{1}{2} \Delta h_{1}$

$$
K_{f}=K_{i}-M_{1} g \Delta h_{1}-M_{2} g \Delta h_{2}=0-M_{1} g \Delta h_{1}+\frac{1}{2} M_{2} g \Delta h_{1}=-\left(M_{1}-\frac{1}{2} M_{2}\right) g \Delta h_{1}
$$

As K_{f} must be non-negative, Δh_{1} must be negative, so M_{1} is the mass that falls.

$$
K_{f}=\left(M_{1}-\frac{1}{2} M_{2}\right) g d
$$

28. Correct Response: B

Set the tension in the cable to the maximum tension, 400 N , and solve for the mass M that creates static equilibrium. Solving for the torque about the pin at point A,

$$
\begin{aligned}
\tau & =(0.700) L(400 \mathrm{~N}) \sin 150 .^{\circ}-(1.00) L M g \sin 90.0^{\circ}-(0.500) L m_{\text {beam }} g \sin 90.0^{\circ}=0 \\
& \Rightarrow M=\frac{(0.700)(400 \mathrm{~N}) \sin 150 .^{\circ}-(0.500)(10.0 \mathrm{~kg})\left(9.80 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \sin 90.0^{\circ}}{(1.00)\left(9.80 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \sin 90.0^{\circ}}=9.28 \mathrm{~kg}
\end{aligned}
$$

29. Correct Response: B

As the total impulse acting on a system is identical to the total change in momentum of the system, response b. is an alternate statement of the law of conservation of momentum.
30. Correct Response: A

$$
\begin{gathered}
\bar{K}=\frac{3}{2} k_{B} T=\frac{1}{2} m v_{r m s}^{2} \Rightarrow \frac{v_{r m s 2}^{2}}{v_{r m s 1}^{2}}=\frac{T_{2}}{T_{1}} \\
\Rightarrow \quad v_{r m s 2}=\sqrt{\frac{T_{2}}{T_{1}}} v_{r m s 1}=\sqrt{\frac{80.0+273.15}{20.0+273.15}} v=1.10 v
\end{gathered}
$$

31. Correct Response: C

Within the described fields, the electrostatic force on the electron is directed toward the top of the page, and, using the right-hand rule, the magnetic force on the electron is toward the bottom of the page. For the electron to move with constant velocity, the net force must be zero, implying that the magnitude of the electrostatic force equals the magnitude of the magnetic force.

$$
q E=q v B \sin \theta \quad \Rightarrow \quad v=\frac{E}{B \sin \theta}=\frac{300 \cdot \frac{\mathrm{~V}}{\mathrm{~m}}}{2.00 \mathrm{~T} \sin 90^{\circ}}=150 . \mathrm{m} / \mathrm{s}
$$

32. Correct Response: B

Taking an approach of reducing the circuit to a single equivalent resistance, the equivalent resistance of R_{2} and R_{3} in parallel is

$$
R_{e q 1}=\frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{(3.00 \Omega)(6.00 \Omega)}{(3.00 \Omega)+(6.00 \Omega)}=2.00 \Omega
$$

This results in an equivalent circuit shown to the right with the R_{1} in series with $R_{e q 1}$. These two resistances

in series have an equivalent resistance

$$
R_{e q 2}=R_{1}+R_{e q 1}=(4.00 \Omega)+(2.00 \Omega)=6.00 \Omega
$$

Ohm's Law may now be used directly to determine the current from the voltage source,

33. Correct Response: D

$$
E_{Z, n}=-13.6 \mathrm{eV} \frac{Z^{2}}{n^{2}} \Rightarrow \frac{E_{3 Z, 2}}{E_{Z, 1}}=\frac{(3 Z)^{2} / 2^{2}}{Z^{2} / 1^{2}}=\frac{9}{4} \quad \Rightarrow \quad E_{3 Z, 2}=\frac{9}{4} E_{Z, 1}
$$

34. Correct Response: A

$$
\begin{gathered}
E=\gamma E_{0} \Rightarrow \gamma=\frac{E}{E_{0}}=\frac{6.0 \times 10^{12} \mathrm{eV}}{9.38 \times 10^{8} \mathrm{eV}}=6.397 \times 10^{3} \\
L=\frac{L_{0}}{\gamma}=\frac{21.6 \mathrm{~m}}{6.397 \times 10^{3}}=3.38 \times 10^{-3} \mathrm{~m}=3.38 \mathrm{~mm}
\end{gathered}
$$

35. Correct Response: E

$$
A=A_{0} e^{-t / \tau} \Rightarrow \tau=\frac{-t}{\ln \frac{A}{A_{0}}}=\frac{-3.00 \mathrm{hr}}{\ln \frac{1.00 \mu \mathrm{Ci}}{4.00 \mu \mathrm{Ci}}}=2.16 \mathrm{hr}
$$

