2018 WYSE State Chemistry Solution Set

17. Answer is D .	 PCl_{3} is trigonal pyramidal, with 3 bonding pair and one nonbonding pair of electrons around the P atom. This arrangement produces 1070 angle between the bonds (little less than the ideal angle $109.5 \circ$ due to the presence of the nonbonding pair of electrons on the central atom.
18. Answer is B.	$200 \mathrm{~g} \mathrm{Na} \times \frac{1 \mathrm{~mol} \mathrm{Na}}{23 \mathrm{~g} \mathrm{Na}} \times \frac{1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}{6 \mathrm{~mol} \mathrm{Na}} \times \frac{159.6 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}}{1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}=231 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3} \text { used up. }$ $\therefore \text { Left over }=250 \mathrm{~g}-231 \mathrm{~g}=19 \mathrm{~g} .$
19. Answer is A.	Endothermic reactions are those where heat is absorbed.
20. Answer is E .	Answer is self-explanatory.
21. Answer is D.	The name heptane refers to a 7-carbon alkane. Trimethyl refers to the existence of three methyl groups ($-\mathrm{CH}_{3}$) attached at carbons $2,2,4$ of the heptane chain.
22. Answer is C.	Isoelectronic configurations occur when two elements and/or ions have the same electronic configurations. C^{4+} would be isoelectronic with helium.
23. Answer is A.	$\frac{7.62 \mathrm{~g}}{\mathrm{~cm}^{3}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}} \times \frac{(100 \mathrm{~cm})^{3}}{(1 \mathrm{~m})^{3}}=7.62 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
24. Answer is B.	Both reflectivity and magnetism are classified as physical properties.
25. Answer is A.	The formula for the polyatomic ion ammonium is $\mathrm{NH}_{4}{ }^{+}$. The formula for the polyatomic ion carbonate is $\mathrm{CO}_{3}{ }^{2-}$. Two ammonium ions are needed to balance one carbonate ion.
26. Answer is D .	Atomic radius increases as you go down a group because each successive period has an additional occupied energy level (principal quantum number). The principal quantum number indicates energy levels as well as relative distance from the nucleus.
27. Answer is B.	$\text { Mass percent }=\frac{\mathrm{g} \text { solute }}{\mathrm{g} \text { solution }} \times 100 \quad \therefore 7.0=\frac{4.6 \mathrm{~g} \mathrm{NaCl}}{\mathrm{x} \text { g solution }} \times 100$
28. Answer is E .	Equation for boiling point elevation $=\Delta T=i K_{b} \underline{m}$. All solutions are aqueous, so K_{b} does not need to be considered. Glucose does not ionize ($\mathrm{i}=1$), CaCl_{2} makes 3 ions ($\mathrm{i}=3$), and KCl makes 2 ions $(\mathrm{i}=2)$. Multiply molality by the van't Hoff factor (i).
29. Answer is B.	Exothermic reactions have negative values for ΔH° and heat can be thought of as a product. If temperature is increased, the reaction will shift to the left, increasing the concentration of reactants. Therefore, the concentration of the only reactant, CO_{2}, would increase when the temperature is increased.
30. Answer is E .	Follows integrated first-order rate law: $\ln [A]_{t}=-k t+\ln [A]_{0}$ $\ln [0.32]=-k(42.0 \mathrm{~min})+\ln [0.45]$, solve for k $\mathrm{k}=8.12 \times 10^{-3} \mathrm{~min}^{-1}$ 90% complete leaves 0.045 M reactant $\ln [0.045]=-\left(8.12 \times 10^{-3}\right) t+\ln [0.45]$ $\mathrm{t}=284$ minutes
31. Answer is A.	Mass number is equal to the number of protons + neutrons. Therefore, there must be 13 protons present, which means there must be 13 electrons present in the atom. The element is Al . When Al forms an ion, it loses three of these electrons, for a total of 10 electrons.
32. Answer is D.	$\begin{array}{ll} \left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9={ }^{\circ} \mathrm{C} & { }^{\circ} \mathrm{C}+273=\mathrm{K} \\ (65-32) \times 5 / 9=18{ }^{\circ} \mathrm{C} & 18+273=291 \mathrm{~K} \\ \hline \end{array}$

33. Answer is D.	Copper is a transition metal and requires the use of a Roman numeral when naming. The formula for cyanide is CN^{-}. Since there are two cyanide ions, copper would need to have a charge of $2+$. Therefore, naming requires the use of the Roman numeral (II) after the copper name.
34. Answer is E.	The only property listed where lithium has a larger value than potassium is that of ionization energy. According to the trend, ionization energy increases as you go from left to right along a period and from bottom to top along a group. Lithium is above potassium on the periodic table.
35. Answer is C.	Solubility rules say "like dissolves like." Hexane is nonpolar and makes a good solvent for other nonpolar compounds. Of the compounds listed, the most nonpolar compound is the one that contains the most hydrocarbon content, and that is C .
36. Answer is B.	$\begin{aligned} & \Delta \mathrm{T}=\mathrm{i} \mathrm{~K}_{\mathrm{f}} \mathrm{~m} \\ & 6.1^{\circ} \mathrm{C}=(1)\left(30 .{ }^{\circ} \mathrm{C} \mathrm{~kg} \mathrm{~mol}\right. \\ & \\ & \left.6.1{ }^{\circ}\right)(\boldsymbol{x} / 2.50 \mathrm{~kg}) \\ & \mathrm{x}=(1)\left(12 .^{\circ} \mathrm{C} \mathrm{~mol}\right. \\ & \\ & \\ & 0.51 \mathrm{~mol} \times 81 \mathrm{~mol} \\ & \end{aligned}$
37. Answer is C.	$\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=\mathrm{P}_{\text {total }}-\mathrm{P}_{\mathrm{H}_{2}}=(0.076-0.021) \mathrm{atm}=0.055 \mathrm{~atm}$ The equilibrium constant expression can be written, remembering that solids and pure liquids are ignored. $\begin{aligned} & \mathrm{K}_{\mathrm{c}}=\left[\mathrm{H}_{2} \mathrm{O}\right] /\left[\mathrm{H}_{2}\right] \\ & \mathrm{K}_{\mathrm{p}}=\left(\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}\right) /\left(\mathrm{P}_{\mathrm{H}_{2}}\right)=\mathrm{K}_{\mathrm{p}}=(0.055 \mathrm{~atm}) /(0.021 \mathrm{~atm})=2.6 \end{aligned}$
38. Answer is E .	A typical rate law can be expressed as: rate $=k[X]^{A}[Y]^{B}$ Since the reaction is found to be first order in X and second order in Y : $\text { rate }=k[X]^{1}[Y]^{2}$ Working with just units: $M / \mathrm{s}=k M^{1} M^{2} \quad \therefore \quad M / \mathrm{s}=k \mathrm{M}^{3} \quad \therefore \frac{M / \mathrm{s}}{M^{3}}=k \quad \therefore \quad M^{-2} s^{-1}=k$
39. Answer is A.	Rutherford's experiment sent alpha particles at a thin sheet of gold. It was found that a small percentage of the particles were deflected, while a majority passed through the sheet. This caused Rutherford to conclude that the mass of an atom was concentrated at its center, known as the nucleus.
40. Answer is C.	Write ratios for the data from experiments 2 and 3 to determine the order with respect to B. Write ratios for the data from experiments 1 and 3 to determine the order with respect to A. $\begin{aligned} & \frac{2.8 \times 10^{-3} M \cdot \min ^{-1}}{7.0 \times 10^{-4} M \cdot \min ^{-1}}=\frac{\mathrm{k}[0.20]^{\mathrm{n}}[0.60]^{\mathrm{m}}}{\mathrm{k}[0.20]^{\mathrm{n}}[0.15]^{\mathrm{m}}} \quad \therefore \mathrm{~m}=1 \\ & \frac{6.3 \times 10^{-3} M \cdot \min ^{-1}}{7.0 \times 10^{-4} M \cdot \min ^{-1}}=\frac{\mathrm{k}[0.60]^{\mathrm{n}}[0.15]^{\mathrm{m}}}{\mathrm{k}[0.20]^{\mathrm{n}}[0.15]^{\mathrm{m}}} \quad \therefore \mathrm{n}=2 \end{aligned}$

