2019 Academic Challenge State Chemistry Solution Set

Answer	Explanation
1. Answer is B.	Emission of alpha particles $\begin{bmatrix} 4\\2 He^{2+} \end{bmatrix}$ from the mother nucleus results in decrease of atomic number by two and mass number by 4 in the daughter nucleus.
2. Answer is D.	Chemical changes/reactions in some situations can produce heat energy.
3. Answer is E.	Out of the two 34-valence-electron systems (choices A and E) this one produces the lowest formal charges for all atoms.
4. Answer is D.	Follows the IUPAC rules of nomenclature.
5. Answer is C.	For this system the temperature above the equilibrium temperature (where $\Delta G = 0$) will cause the system to be nonspontaneous. $\Delta G = \Delta H - T\Delta S$ leading $T_{eq} = \left[\frac{\Delta H}{\Delta S}\right] = \left[\frac{-11.0 \times 10^3 J}{-17.4 J/K}\right] = 632 \text{ K}$
6. Answer is A.	Follows the IUPAC nomenclature rules.
7. Answer is A.	Definition of surface tension.
8. Answer is C.	$[H^+] = 10^{-pH} M = 10^{-6.630} M = 2.344 \times 10^{-7} M$; this is also the [OH ⁻]. In aqueous solution $K_w = [H^+] \times [OH^-] = [2.344 \times 10^{-7}]^2 = 5.50 \times 10^{-14}$.
9. Answer is A.	98.7 g Fe x $\frac{1 \text{ mol Fe}}{55.8 \text{ g Fe}} \times \frac{852 \text{ kJ}}{2 \text{ mol Fe}} = 754 \text{ kJ}$
10. Answer is C.	Drawing the Lewis structure will reveal that this species possesses dispersion and dipole forces but not hydrogen bonding.
11. Answer is B.	HA(aq) \rightleftharpoons H ⁺ (aq) + A ⁻ (aq). At equilibrium, [H ⁺] = [A ⁻] [H ⁺] = 10 ^{-pH} M = 10 ^{-2.80} M = 1.58 x 10 ⁻³ M ∴ At equilibrium, [HA] = 0.294 M - 1.58 x 10 ⁻³ M = 0.292 M ∴ K _a = $\frac{[1.58 \times 10^{-3}]^2}{0.292}$ = 8.6 x 10 ⁻⁶
12. Answer is B.	$55.0 \text{ g S x } \frac{1 \text{ mol S}}{32.1 \text{ g S}} \text{ x } \frac{2 \text{ mol } \text{ H}_2 \text{ S}}{3 \text{ mol S}} = 1.142 \text{ mol } \text{ H}_2 \text{ S}.$ Plugging this value in PV = nRT will result in $V = \frac{\text{nRT}}{P} = \frac{1.142 \text{ mol x } 0.0821 \text{ L.atm x mol}^{-1} \text{ K}^{-1} \text{ x } 375 \text{ K}}{1.20 \text{ atm}} = 29.3 \text{ atm}$
13. Answer is D.	$pOH = -log [OH^-] = -log(4.15 \times 10^{-6} M) = 5.382$ pH = 14 - pOH = 8.618, the solution is basic at this pH value. $[H^+] = 10^{-pH} M = 10^{-8.618} M = 2.41 \times 10^{-9} M$
14. Answer is E.	At STP, $D_{gas} = \frac{\text{molar mass}}{\text{molar volume}} = \frac{\text{molar mass}}{22.4 \text{ L}} \therefore D_{gas} \infty$ molar mass. SF ₆ has the highest molar mass among the choices.
15. Answer is A.	$\begin{split} m_{water} &= 268.5 \ g - 143.669 \ g = 124.831 \ g \\ V_{water} &= m_{water} / D_{water} = 124.831 \ g / 1.000 \ g / mL = 124.831 \ mL \\ V_{metal} &= V_{total} - V_{water} = 126.4 \ mL - 124.831 \ mL = 1.569 \ mL \\ D_{metal} &= m_{metal} / V_{metal} \ = 4.369 \ g / 1.569 \ mL = 2.78 \ g / mL \end{split}$
16. Answer is A.	If an aluminum compound formula is A lX , then X must carry a charge of 3- as A l forms A l^{3+} . Nitrogen is gaseous in natural state and forms an anion of N ³⁻ (nitride).

	1.043 g CO ₂ x $\frac{12 \text{ g C}}{44 \text{ g CO}_2}$ = 0.284 g C	c-atom 0.56	7 g H ₂ O x $\frac{2 \times 1.0}{18 \text{ g}}$	$\frac{0 \text{ g H}}{H_2 0} = 0.063 \text{ g H-atom}$	
17. Answer is C.	Mass of O in the sample = 0.600 – 0.284 – 0.063 = 0.253 g				
	Atom	С	Н	0	
	mass (g)	0.284	0.063	0.253	
	molar mass (g/mol)	12.0	1.0	16.0	
	mol	0.0237	0.063	0.0158	
	ratio to lowest mol	1.51	3.98	1.00	
	whole number ratio (multiply by 2)	3.0	7.96	2.0	
	Empirical formula C ₃ H ₈ O ₂				
	Initial moles acetic acid = 0.500 L >	< 0.20 M = 0.	100 mol		
	Initial moles acetate = 0.500 L x 0.30 M = 0.150 mol				
	moles OH^{-} added from NaOH = 0.0200 L x 1.00 M = 0.0200 mol				
	the reaction that occurs is $CH_3COOH + OH^- \rightarrow CH_3COO^- + H_2O$				
	moles acetic acid remaining at completion = $0.100 - 0.0200 = 0.0800$ mol				
18. Answer is C.	moles acetate remaining at completion = 0.150 + 0.0200=0.170 mol				
	total volume at completion = 0.520	L			
	[acetate] = 0.170 mol/ 0.520 L = 0.3	327 M			
	[acetic acid] = 0.0800 mol / 0.520 L	= 0.154 M			
	pRa = 4.74				
	$pH = 4.74 + \log \frac{0.027 M}{0.154 M} = 5.07$				
	Using the integrated rate law for th	e first-order i	eaction		
19. Answer is D.	$\ln[A]/[A_0] = -kt$ In (75/10)	0) = –k (60.0	min)		
	$k = 4.79 \times 10^{-3} / \text{min}$ $t_{1/2} = 0.69$)3/k			
	$t_{1/2} = 0.693/4.79 \times 10^{\circ}/min = 145 m$	ninutes	·		
	Photoelectric effect equation,	hv = BE + I	KE (uuuuu		
	(Where $BE = binding energy; KE = kinetic energy; v = frequency)$				
20. Answer is E.	$6.626 \times 10^{-3^{\circ}} \text{ J s } \times 2.50 \times 10^{1^{\circ}} \text{ /s } = \text{BE}$ (When KE = 0)				
	$= 6.626 \times 10^{-3^{4}} \text{ J s x } 2.50 \times 10^{14} \text{ s}^{-1} \text{ x } (6.022 \text{ x } 10^{23} / \text{mol})(10^{-3} \text{ kJ/1 J}) = 99.75 \text{ kJ/mol}$				
21. Answer is A.	$V_{\text{lead}} = \frac{4}{3}\pi r^3 = \frac{4 \times 3.1416 \times (0.050 \text{ cm})^3}{3} = 5.24 \times 10^{-4} \text{ cm}^3$				
	$m_{lead} = D_{lead} \times V_{lead} = 11.4 \text{ g/cm}^3 \times 5$	5.24 x 10 cr	$n^3 = 6.0 \times 10^{-3}$	g	
	In reaction: 2 C + $O_2 \rightarrow$ 2 CO; m	ole ratio of C	C:O ₂ = 2:1;	128 g O_2 is equivalent	
22 Answer is B	to 4 mol, therefore, moles of C is 8.				
	In reaction: 1 C + O ₂ \rightarrow 1 CO ₂ ; mole ratio of C : O ₂ = 1 : 1; therefore there are 8				
	moles of O ₂ that is equivalent to 25	6 g.			
	My approach if accepted: The reac	tion is 2 C ₈ H	$_{18}$ + 25 $O_2 \rightarrow 1$	6 CO ₂ + 18 H ₂ O	
23. Answer is B.	$15.0 \text{ g C}_{0}\text{H}_{10} \times \frac{1 \text{ mol } \text{C}_{8}\text{H}_{18}}{18} \times \frac{16 \text{ mol } \text{CO}_{2}}{10 \text{ mol } \text{CO}_{2}} \times \frac{44 \text{ g CO}_{2}}{10 \text{ mol } \text{CO}_{2}} = 46.3 \text{ g CO}_{2}$				
	$114 \text{ g } C_8 \text{H}_{18}$ $1 \text{ mol } C_8 \text{H}_{18}$ $1 \text{ mol } C_2$ $100 \text{ g } C_2$				
	15.0 g O ₂ x $\frac{1 \mod O_2}{32 \operatorname{g} O_2}$ x $\frac{16 \mod CO_2}{25 \mod O_2}$ x $\frac{44 \operatorname{g} CO_2}{1 \mod CO_2}$ = 13.2 g CO ₂ = theoretical yield				
	The experimental yield is 93%. \therefore , the actual amount is 13.2 g x 0.93 = 12.3 g CO ₂				

24. Answer is C.	Consider x to be the amount, moles/L, of HCNO that dissociates $[HCNO] = 0.50 - x; [CNO^-] = 0.10 + x; [H^+] = x$ 0.10 M NaCNO completely dissociates (sodium salt) for the equilibrium: HCNO \rightleftharpoons H ⁺ + CNO ⁻ K _a = [H ⁺] [CNO ⁻ /[HCNO] = 2.0 x 10 ⁻⁴ = (x) (0.10 + x) / 0.50 - x x = 0.001 M \therefore 0.001 : 0.50 = x : 100 \therefore x = 0.2 %
25. Answer is D.	$ \begin{array}{l} k = 1/t \left[1/a - 1/x \right] \\ x = initial \ conc \ , \ a = \ conc \ after \ 23 \ sec = 0.3M \\ 0.039 = 1/23 \ [1/0.3 - 1/x] \\ x = 0.41 \ M \end{array} $
26. Answer is E.	$\lambda = h/mv (\lambda = wavelength; h = Planck's constant = 6.626 x 10^{-34} J s; m = mass (kg);$ v = velocity) $\lambda = 6.626 x 10^{-34} kg.m^{2}.s^{-2}.s / 9.11 \times 10^{-31} kg x 6.00 \times 10^{6} m/s$ = 6.626x10 ⁻³⁴ J s / 9.11×10 ⁻³¹ kg x 6.00 × 10 ⁶ m/s = 1.21 x 10 ⁻¹⁰ m
27. Answer is E.	$E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode}$ Ni ²⁺ /Ni is the reduction (cathode) reaction and Fe ²⁺ /Fe ³⁺ is the oxidation reaction (anode) $\therefore E^{\circ}_{cell} = -0.23 - 0.77 = -1.00 \text{ V}$
28. Answer is A.	$NaCl(s) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$. When dissolution is endothermic, heat is a reactant. Raising the temperature will push the reaction to the right.
29. Answer is A.	Assume there is one mole of the compound; therefore, the mass of the compound is 6.45×10^4 g. $0.00346 \times 6.45 \times 10^4$ g = 223.17 g Fe $\times \frac{1 \text{ mole Fe}}{55.85 \text{ g Fe}} = 4$ moles Fe
20 Answer is D	4. That of means in molecule contains 4 non atoms. The redium extien has only 10 electrons $1s^22s^2cs^6$
31. Answer is E.	Elemental copper has an electron configuration of 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ . Loss of the valence electron (4s ¹) to form copper(I) leaves all other sublevels full; therefore, all electrons are paired.
32. Answer is E.	Solve $M_1V_1 = M_2V_2$ for the volume of stock solution needed: $3.5(V_1) = 0.45(250)$ $V_1 = 32.14$ mL of stock 3.5M solution needed 250 mL - 32.14 mL = 218 mL of water needed
33. Answer is C.	Based on the given information and according to LeChatelier's principle, a shift to the left would decrease red color, while a shift to the right would increase the red color. Only answer C: removing SCN ⁻ , which would shift the equilibrium to the left, matches with the appropriate color change.
34. Answer is B.	Barium fluoride is BaF ₂ . So, $K_{sp} = [Ba^{2+}][F^{-}]^2$. Due to the 1:1 ratio of Ba ²⁺ to BaF ₂ , the solubility of 0.018 mol/L is the concentration of barium. The concentration of fluoride would be 2 x 0.018 or 0.036 mol/L. $K_{sp} = [0.018][0.036]^2 = 2.3 \times 10^{-5}$
35. Answer is B.	Ionic bonds form between metals and nonmetals. Metals are characterized by low ionization energies. Nonmetals are characterized by high electron affinities. The most likely metal is R (lowest ionization energy). The most likely nonmetal is Q (highest electron affinity).
36. Answer is C.	Based on the trend on decreasing ionization energy going down a column, C is the correct answer. All other choices are the opposite of the observed periodic property trends.

37. Answer is D.	The equation $\Delta T_{f} = k_{f} \times m$ is used to calculate the freezing point depression. 12.8 g C ₁₀ H ₈ x $\frac{1 \text{ mole}}{128.18 \text{ g}} = 0.09986 \text{ mole } C_{10}H_{8}$ $m = \frac{0.09986 \text{ mole}}{0.500 \text{ h}} = 0.19972 m$
	$\Delta T_f = 5.12 \times 0.19972 = 1.02^{\circ} \text{ C}. T_f = 5.48^{\circ} \text{ C} - 1.02^{\circ} \text{ C} = 4.46^{\circ} \text{ C}$
38. Answer is B.	The Van't Hoff factor for sucrose is 1, while that for $CaCl_2$ is 3. Since the molalities are identical, the compound with the highest Van't Hoff factor would have the highest boiling point.
39. Answer is D.	Shortest wavelength is the highest energy radiation. X-rays are the highest energy radiation of the five choices.
40. Answer is E.	Use the following equation: $\Delta E = -2.18 \times 10^{-18} (1/n_f^2 - 1/n_i^2) = -2.18 \times 10^{-18} (1/2^2 - 1/3^2) = -3.03 \times 10^{-19} \text{ J}$ The answer is positive because the word released implies the negative sign.