> WYSE - Academic Challenge
> Mathematics Solutions (State) - 2018

1. Ans E: This is an example of "integration by parts", the formula for which is $\int u d v=u v-\int v d u$. In this scenario, it is easiest to $u s e u=\ln x$ and $d v=x^{2} d x$ so $d u=\frac{1}{x} d x$ and $v=\frac{x^{3}}{3}$. This means that $\int v d u=\int \frac{x^{3}}{3} \frac{1}{x} d x=\int \frac{x^{2}}{3} d x=\frac{x^{3}}{9}+C$. So an antiderivative of this particular function (with respect to x) would be of the form $\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}+C$.
2. Ans B: If the floor sits on the xy-plane centered on the origin, the equation for the floor's circle is given by $x^{2}+y^{2}=9$ based on a diameter of 6 feet and radius of 3 feet.
Assuming the north/south diameter lies along the y-axis, we can determine the distance from the x-axis (which will be used to determine the height of the square cross sections) by solving $x^{2}+y^{2}=9$ for y. We get upper and lower bounds of $y=\sqrt{9-x^{2}}$ and $y=-\sqrt{9-x^{2}}$. The side length of each cross section is $\sqrt{9-x^{2}}-\left(-\sqrt{9-x^{2}}\right)=2 \sqrt{9-x^{2}}$, giving us cross-sectional areas of $\left(2 \sqrt{9-x^{2}}\right)^{2}=4\left(9-x^{2}\right)=36-4 x^{2}$. We calculate the volume using integration: $V=\int_{-3}^{3}\left(36-4 x^{2}\right) d x=\left.\left(36 x-\frac{4 x^{3}}{3}\right)\right|_{-3} ^{3}=144$. The lodge contains $144 \mathrm{ft}^{3}$.
3. Ans E : Using the double angle identity for tangent, we have $\frac{16 \tan x}{1-\tan ^{2} x}=5 \tan x$. Thus, $\tan x=0$ or $\frac{16}{1-\tan ^{2} x}=5$. If $\tan x=0$, then $x=n \pi$ where n is any integer, giving us answer E. There are no other solutions, because the second equation can be rewritten as $16=5-5 \tan ^{2} x$. The only way this is possible is if $\tan ^{2} x=-2.2$, which is impossible.
4. Ans E: Let the horizontal distance between Martha and the kite be represented by x . The vertical distance (constant altitude) is 300 ft . This means x and 300 are the legs of a right triangle, with a hypotenuse of z (the extended amount of string). Using the Pythagorean Theorem, we get the equation $x^{2}+300^{2}=z^{2}$. When z is 500 , the length x would be $x=400$. Note that x and z change while the altitude is held constant at 300 ft . Implicit differentiation gives us $2 x \frac{d x}{d t}+0=2 z \frac{d z}{d t}$. We are told the horizontal rate of change is $\frac{d x}{d t}=20$. Substituting in our values $z=500, x=400$, and $\frac{d x}{d t}=20$, we have $2(400)(20)=2(500) \frac{\mathrm{dz}}{\mathrm{dt}}$. Solving for $\frac{\mathrm{dz}}{\mathrm{dt}}$ we get $\frac{\mathrm{dz}}{\mathrm{dt}}=\frac{16000}{1000}=16 \mathrm{ft} / \mathrm{sec}$.
5. Ans A: A regular icosahedron has 20 faces, each a regular triangle. This represents a total of 60 vertices for the triangles, but since each vertex of the icosahedron is shared by 5 triangles, we end up with $60 / 5=12$ total vertices for the polyhedron.
6. Ans A: The cross product is $\left|\begin{array}{lll}i & j & k \\ 6 & 9 & 4 \\ 2 & 1 & 8\end{array}\right|=i\left|\begin{array}{ll}9 & 4 \\ 1 & 8\end{array}\right|-j\left|\begin{array}{ll}6 & 4 \\ 2 & 8\end{array}\right|+k\left|\begin{array}{ll}6 & 9 \\ 2 & 1\end{array}\right|=68 i-40 j-12 k$.

Adding the coordinates gives us $68+(-40)+(-12)=14$.
7. Ans D: Since $x=\sec (t)$, then $x^{2}=\sec ^{2}(t)=\tan ^{2}(t)+1$. But since $y^{2}=\tan ^{2}(t)$, we can simplify this to $x^{2}=y^{2}+1$, which then gives us $x^{2}-y^{2}=1$.
8. Ans D: There are 17 balls. There are 9 balls with primary colors (blue, red, yellow).

There are $C(17,3)=680$ possible sets of three balls. There are $C(9,3)=84$ ways to get sets of all three primary colors. So then there are $680-84=596$ sets of three balls with at least one non-primary color.
9. Ans C : Note that $A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}v & -t \\ -u & s\end{array}\right]$ where $\operatorname{det}(A)=s v-t u$. So $A^{-1}=\left[\begin{array}{cc}\frac{v}{s v-t u} & \frac{-t}{s v-t u} \\ \frac{-u}{s v-t u} & \frac{s}{s v-t u}\end{array}\right]$, which is equivalent to answer C.
10. Ans E : Let $D(t)$ measure the distance (in feet) the train has travelled t seconds after applying the brakes. Then $D^{\prime \prime}(t)=-0.5, D^{\prime}(0)=60$, and $D(0)=0$. Take the antiderivative of $D^{\prime \prime}(t)$ to get $D^{\prime}(t)=-0.5 t+C$. Use $D^{\prime}(0)=60$ to get $C=60$, giving us $D^{\prime}(t)=-0.5 t+60$. Solve for $D^{\prime}(t)=0$ to determine the train stops at $t=120$ seconds. Take the antiderivative of $D^{\prime}(t)$ to get $D(t)=-0.25 t^{2}+60 t+C$. Use $D(0)=0$ to determine $C=0$, giving us $D(t)=-0.25 t^{2}+60 t$. Plug in $t=120$ to find the train has travelled 3600 feet.
11. Ans B: For $\frac{(x-2)^{2}}{9}-\frac{(y+5)^{2}}{16}=1$, the length of the transverse axis is $2 \sqrt{9}=6$ and the length of the conjugate axis is $2 \sqrt{16}=8$. The difference in lengths is $8-6=2$.
12. Ans B : By rules of logarithms: $3 \log \left(x^{2}-1\right)-2 \log (x+1)=\log \left(x^{2}-1\right)^{3}-\log (x+1)^{2}=$ $\log \frac{\left(x^{2}-1\right)^{3}}{(x+1)^{2}}=\log \frac{(x+1)^{3}(x-1)^{3}}{(x+1)^{2}}=\log \frac{(x+1)(x-1)(x-1)^{2}}{1}$, which may be rewritten as $\log \left(x^{2}-1\right)(x-1)^{2}$.
13. Ans E : Based on the format $y=A \cos (k(t-B))+C$, the phase shift is B and the period is $\frac{2 \pi}{k}$. Factor the given equation to get $y=-\frac{1}{2} \cos \left(\frac{3}{4}\left(x+\frac{\pi}{3}\right)\right)+2$. Based on the format, we would have a phase shift of $-\frac{\pi}{3}$ and a period of $\frac{2 \pi}{\left(\frac{3}{4}\right)}=\frac{8 \pi}{3}$.
14. Ans D : If h is the height of ascent, then $\tan 72^{\circ}=\frac{h}{100}$, giving $h \approx 307.8$ feet, and a rate of ascent of $\frac{307.8}{10}=30.78$ feet per second, which rounds to 31 fps .
15. Ans E : The first one translates to $\mathrm{y}=7 \mathrm{e}^{-2(t+4)}-6$. The second one translates to $y=7\left(e^{-2(t-2)}-6\right)+36$. The third one translates to $y=7 e^{-2(t-2)}-6$. Both II and III are equivalent to the original function.
16. Ans D : The probability of getting exactly $r 6 s$ in n rolls is $C(n, r)\left(\frac{1}{6}\right)^{r}\left(\frac{5}{6}\right)^{n-r}$. "Three or fewer" out of 20 implies that we should take the sum $\sum_{r=0}^{3} C(20, r)\left(\frac{1}{6}\right)^{r}\left(\frac{5}{6}\right)^{20-r} \approx 0.56655$.
17. Ans A : Let R_{1}, R_{2}, and R_{3} represent the event the contestant chooses the prospective routes, and let T represent the event the contestant is trapped. Then using Bayes' Rule, we want $P\left(R_{1} \mid T\right)=\frac{P\left(R_{1}\right) P\left(T \mid R_{1}\right)}{P(T)}=\frac{P\left(R_{1}\right) P\left(T \mid R_{1}\right)}{P\left(R_{1}\right) P\left(T \mid R_{1}\right)+P\left(R_{2}\right) P\left(T \mid R_{2}\right)+P\left(R_{3}\right) P\left(T \mid R_{3}\right)}$ where $P\left(R_{1}\right)=0.50, P\left(R_{2}\right)=0.25, P\left(R_{3}\right)=0.25, P\left(T \mid R_{1}\right)=0.80, P\left(T \mid R_{2}\right)=0.60$, and $P\left(T \mid R_{3}\right)=0.30$. Then $P\left(R_{1} \mid T\right)=\frac{0.50(0.80)}{0.50(0.80)+0.25(0.60)+0.25(0.30)}=0.64$.
18. Ans C : Based on $\mathrm{V}=\mathrm{s}^{3}$, each edge has a length of 10 cm . The surface area of a cube is given by $A=6 s^{2}$. By implicit differentiation, $\frac{d A}{d t}=6 \cdot 2 s \cdot \frac{d s}{d t}$. If we plug in 10 for s and 4 for $\frac{\mathrm{ds}}{\mathrm{dt}}$, we get $\frac{\mathrm{dA}}{\mathrm{dt}}=6 \cdot 2 \cdot 10 \cdot 4=480 \mathrm{~cm}^{2}$ per second.
19. Ans E: Using similar triangles we can find x, the length of the larger base of the right trapezoid. This means $\frac{120}{140}=\frac{x}{140+84}$ and $x=\frac{120}{140}(224)=192$. To find the hypotenuse of the large triangle containing both Lots A and B we use the Pythagorean Theorem to get $\sqrt{224^{2}+192^{2}} \approx 295.03$. The smaller hypotenuse side of Lot A is found the same way: $\sqrt{140^{2}+120^{2}} \approx 184.39$. The frontage on First Street for Lot B is then the difference in the lengths of these hypotenuses: $295.03-184.39=110.64$. The sum of the four sides of Lot B is $110.64+192+84+120=506.64 \approx 507$.
20. Ans D : Circumference is $2 \pi r=25$, giving us $r=\frac{25}{2 \pi}$. Surface area is given by $A=4 \pi r^{2}$. Then $A=4 \pi\left(\frac{25}{2 \pi}\right)^{2} \approx 199$.
21. Ans C: Bill completes a single lap every 200 seconds. Fifteen minutes is equal to 900 seconds, so Bill has finished four laps and is 100 seconds (halfway) into a fifth. This gives him a 200-meter head start on Andy. Solving the equation $2 \mathrm{t}+200=4 \mathrm{t}$ gives us a solution of $t=100$, or one minute forty seconds. The closest whole minute is 2 minutes after $12: 15$, which is $12: 17$.
22. Ans E: If there are x liters of water, then there would be $(2,000-x)$ liters of 25% saline solution in the mixture. There would also be $0.02(2000)=40 \mathrm{~L}$ of pure saline, so $0.25(2000-x)=40$. That means however, that $500-0.25 x=40$. Continue to solve, giving us $0.25 x=460$, and $x=1920 L$ of water. So the chemist needs 80 L of saline, which is more than what is available in the lab.
23. Ans E: There are two groups of solutions, the ones where $\tan x=1$ and the ones where $\tan x=-1$. The period of $\tan x$ is π, and for any real number $k, \tan x=k$ has exactly one solution per period. This interval has 2 full periods of the tangent function in it, so each of those groups of solutions appears twice. Therefore, there are four solutions in this interval.
24. Ans C: Note that $\mathrm{HA}=\mathrm{CA}-\mathrm{CH}=14.5-2=12.5 \Rightarrow 2(12.5)=(\mathrm{DH})^{2} \Rightarrow \mathrm{DH}=\mathrm{HB}=5$. Therefore $\mathrm{EB}=16$. So $6(16)=8(\mathrm{EG}) \Rightarrow \mathrm{EG}=12$. $\mathrm{GF}=\mathrm{EG}-\mathrm{EF}=12-8=4$.
25. Ans C : Let A be the number of flyers Anne took and B be the number Beth took. Anne has 0.30A fliers left and Beth has 0.60B fliers left. Since 0.30A $=0.60 \mathrm{~B}$, then $\mathrm{A}=2 \mathrm{~B}$. Substituting for A gives us $2 B+B=3 B$ original fliers and $0.70(2 B)+0.40 B=1.80 B$ fliers distributed. The fraction of fliers distributed is $1.80 \mathrm{~B} / 3 \mathrm{~B}=0.6$, or 60%.
26. Ans D: Because $2^{2}=4$ and $2^{5}=32,2^{2 x}=2^{5 y}$ and so $2 x=5 y$. Thus $x=2.5 y$ which means that x is 250% of y.
27. Ans B : Isolate the $\sqrt{2 x-3}$ and square each side to get $(\sqrt{2 x-3})^{2}=(2+\sqrt{x+7})^{2} \Rightarrow$ $2 x-3=4+4 \sqrt{x+7}+x+7$. Now isolate the $4 \sqrt{x+7}$ on the right and square each side to get $(x-14)^{2}=(4 \sqrt{x+7})^{2} \Rightarrow x^{2}-28 x+196=16(x+7)$. Now simplify, factor, and solve: $x^{2}-44 x+84=0 \Rightarrow(x-2)(x-42)=0 \Rightarrow x=2$ or $x=42$. Now try each of the solutions in the original equation. For $x=2$, we have $\sqrt{2 \cdot 2-3}-\sqrt{2+7}=1-3=-2$, which implies $x=2$ is an extraneous root. For $x=42, \sqrt{2(42)-3}-\sqrt{42+7}=9-7=2$, which implies $x=42$ is a true root.
28. Ans D: In the first minute, 200 rabbits each drink one ounce. Using the finite geometric series formula $S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$ with $r=2$ and $a_{1}=200$, we need to set $S_{n}=1,280,000$. Then $1,280,000=\frac{200\left(1-2^{n}\right)}{1-2}$, and upon simplification, we have that $-6400=1-2^{n}$. So $2^{n}=6,401$. Since the first integer n that satisfies this is $n=13$ (which gives us 8,192), it is after 13 minutes when the rabbits have combined for at least 10,000 gallons.
29. Ans A : Let x represent the distance from C to B, giving us $15-x$ as the distance from D to C. Since $A D=2.5$, use the Pythagorean Theorem, to get $A C=\sqrt{(15-x)^{2}+(2.5)^{2}}$. The rowing time can be expressed as $\frac{\sqrt{(x-15)^{2}+6.25}}{4}$ and the jogging time can be expressed as $\frac{x}{8}$. She completes the task in 3 hours. This gives us the following equation: $\frac{\sqrt{(x-15)^{2}+6.25}}{4}+\frac{x}{8}=3$. Solving either by graph or by hand gives us a solution of $x \approx 6.74$ (ignoring any solutions that do not satisfy $0 \leq x \leq 15$). The jogging time given by $\frac{x}{8}$ becomes $\frac{6.74}{8} \approx 0.8425$ hrs. Converting to minutes, we have $60(0.8425)=50.55 \approx 51$ minutes.
30. Ans C: Since there was only one win/loss record of 3-0 and only one of $0-3$, there must be three $2-1$ and three 1-2 records. Hal and Fred are definitely $1-2$ by I and II, and Erin is $1-2$ according to III. This leaves only the 3-0, the three 2-1's, and the 0-3 unaccounted for. To get the right total by IV, the men must be 5-7 overall. Fred and Hal account for $2-4$, so Bob and Dave's total is 3-3. Since all 1-2's are accounted for, only the 0-3 and 3-0 are left to give us 3-3. Since we know Bob has lost two games, it leaves only Dave to be the $3-0$ victor. (Note that V and VI are technically unnecessary information.)

