

2023 Academic Challenge STATE CHEMISTRY EXAM

Chemistry Test Production Team

Iffat Ali, Lake Land College – Author/Team Leader Gregory Capitosti, Lake Land College – Author/Reviewer

GENERAL DIRECTIONS

Please read the following instructions carefully. This is a timed test; any instructions from the test supervisor should be followed promptly.

The test supervisor will give instructions for filling in any necessary information on the answer sheet. Most Academic Challenge sites will ask you to indicate your answer to each question by marking an oval that corresponds to the correct answer for that question. One oval should be marked to answer each question. Multiple ovals will automatically be graded as an incorrect answer.

Be sure ovals are marked as lacktriangle , not lacktriangle , lacktriangle , etc.

If you wish to change an answer, erase your first mark completely before marking your new choice.

You are advised to use your time effectively and to work as rapidly as you can without losing accuracy. Do not waste your time on questions that seem too difficult for you. Go on to the other questions, and then come back to the difficult ones later if time remains.

Time: 40 Minutes Number of Questions: 40

DO NOT OPEN TEST BOOKLET UNTIL YOU ARE TOLD TO DO SO!

©2023 Eastern Illinois University

All rights reserved

1				_												17	18
IA]	Peri	lodi	c Ta	ble	of t	he E	llem	ents	5			VIIA	VIIIA
1																1	2
H	2											13	14	15	16	H	He
1.0079	IIA	_										IIIA	IVA	VA	VIA	1.0079	4.0026
3	4											5	6	7	8	9	10
Li	Be											В	C	N	O	\mathbf{F}	Ne
6.941	9.012											10.81	12.011	14.007	15.999	18.998	20.179
11	12										'	13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
22.990	24.305	IIIB	IVB	VB	VIB	VIIB	←	VIIIB	\rightarrow	IB	IIB	26.982	28.086	30.974	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.08	44.956	47.90	50.941	51.996	54.938	55.847	58.933	58.70	63.546	65.38	69.72	72.59	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	\mathbf{Y}	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.468	87.62	88.906	91.22	92.906	95.94	[97.91]	101.07	102.905	106.4	107.868	112.41	114.82	118.69	121.75	127.60	126.904	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.905	137.33		178.49	180.948	183.85	186.21	190.2	192.22	195.05	196.966	200.59	204.37	207.2	208.98	[208.98]	[209.99]	[222.02]
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
[223.02]	[226.03]		[265.12]	[268.13]	_	[270]	[277.15]	[276.15]	[281.16]	[280.16]	[285.17]	[284.18]	[289.19]	[288.19]	[293]	[294]	[294]
																	
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
Lantha	anides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
		138.905	140.12	140.907	144.24	[145]	150.4	151.96	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967	
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
Actini	des	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		[277.03]	232.038	231.035	238.029	[237.05]	[244.06]	[243.06]	[247.07]	[247.07]	[251.08]	[252.08]	[257.10]	[258.10]	[259.10]	[262.11]	

$q = m \cdot c_s \cdot \Delta T$	$\Delta T_f = i \cdot K_f \cdot m$
$\Delta T_b = i \cdot K_b \cdot m$	$S_{gas} = k_H \cdot P_{gas}$
$P_{\text{solvent}} = X_{\text{solvent}} \cdot P_{\text{solvent}}^{\text{o}}$	$k = Ae^{-E_a/RT}$
$ \ln\left(\frac{[A]_t}{[A]_0}\right) = -kt $	$\frac{1}{[A]_t} - \frac{1}{[A]_0} = kt$
$[A]_t - [A]_0 = -kt$	$\ln\left(\frac{k_2}{k_1}\right) = \frac{-E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$
$pH = -\log[H_3O^+]$ $pH = pK_a + \log\left(\frac{[A^-]}{[HA]}\right)$	$\ln\left(\frac{P_2}{P_1}\right) = \frac{-\Delta H_{vap}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$
$\Delta G^0 = \Delta H^0 - T \Delta S^0$	$pOH = -log[OH^{-}]$ $-\Delta H_{SYS}$
$\Delta E = B \left(\frac{1}{n_f^2 - n_i^2} \right)$	$\Delta S_{surr} = \frac{-\Delta H_{sys}}{T}$ $E_{cell}^{\circ} = E_{red}^{\circ} + E_{ox}^{\circ}$
$\Delta G^0 = -nF\varepsilon^0$	$-b \pm \sqrt{b^2 - 4ac}$
$\Pi = MRT$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$F = 96485 \frac{C}{mol}$	$c = \lambda v$
III01	$\Delta E = hv$
$R = 0.08206 \frac{\text{L} \cdot \text{atm}}{\text{mol} \cdot \text{K}}$	$K_w = 1.0 \times 10^{-14}$
1.0 kg = 2.2 lb	$B = -2.18 \times 10^{-18} \mathrm{J}$
1.0 in = 2.54 cm	$N_A = 6.022 \times 10^{23}$
1 lb = 453.59 g	1 atm = 101,325 Pa = 1.01325 bar
$c = 2.998 \times 10^8 \text{ m/s}$	$1 J = 1 N \cdot m = 1 kg \cdot m \cdot s^2 = 0.239 cal$
$h = 6.626 \times 10^{-34} \text{J} \cdot \text{s}$	

Assume all gases behave ideally unless specifically told to do otherwise

Assume all solutions are aqueous and at 25 °C unless specifically told otherwise Assume all gases are at STP unless specifically told otherwise

Simple Rules for the Solubility of Salts in Water

- 1. Most nitrates are soluble

- Most salts containing Group 1 ions or ammonium (NH₄⁺) are soluble
 Most chloride, bromide, and iodide salts are soluble except those of Ag⁺, Pb²⁺, and Hg₂²⁺.
 Most sulfates are soluble with the exception of Ba²⁺, Pb²⁺, Hg₂²⁺, and Ca²⁺
 Most hydroxide salts are only slightly soluble with the exception of Group 1 hydroxides. Group 2 (Ba²⁺ to Ca²⁺) are slightly soluble.
- 6. Most sulfides, carbonates, chromates, and phosphates are only slightly soluble

2023 Academic Challenge State Chemistry Exam

- 1. Which of the following method is the best for the separation of a mixture of ethyl alcohol and water?
 - A. distillation
 - B. light absorption
 - C. electrolysis
 - D. gas-liquid chromatography
 - E. filtration
- 2. What is the correct name for TiCl₄?
 - A. monotitanium tetrachloride
 - B. tetrachlorine titanate
 - C. titanium tetrachlorine
 - D. titanium(IV) tetrachloride
 - E. titanium(IV) chloride
- 3. All of the following Lewis structures of nitrogen oxides are possible EXCEPT

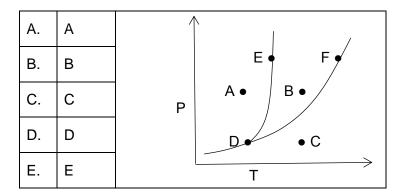
$$: N = N - O: \begin{cases} 0: & O: & O: \\ 0: & O: \\ 0: & O: \end{cases}$$

$$(N_2O_4) \qquad (N_2O_3) \qquad (N_2O_5)$$

- A. N₂O
- B. N₂O₄
- $C. N_2O_3$
- D. N_2O_5
- E. All of the above are correct structures.
- 4. Use the following thermochemical information

(1)
$$S_8(s) + 8 O_2(g) \rightarrow 8 SO_2(g)$$
 $\Delta H_1 = -2374.6 \text{ kJ}$
(2) $S_8(s) + 12 O_2(g) \rightarrow 8 SO_3(g)$ $\Delta H_2 = -3165.8 \text{ kJ}$

(2)
$$S_0(s) + 12 O_0(a) \rightarrow 8 SO_0(a)$$


$$\Delta H_2 = -3165.8 \text{ kJ}$$

to calculate the ΔH_{rxn} for the combustion of sulfur dioxide

$$2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$$

- A. -5540 kJ
- B. -1385.1 kJ
- C. -197.8 kJ
- D. 251.7 kJ
- E. 791.2 kJ

5. On the phase diagram (right side of the table), which point corresponds to conditions where solid, liquid, and gas phases all exist in equilibrium?

6. A salt solution can be acidic, basic, or neutral. When dissolved in water, which of the following salts will make the solution basic?

FeCl₃, NaBr, CaCO₃, Na₃PO₄, NH₄Br

- A. CaCO₃ and Na₃PO₄
- B. FeCl₃ and NaBr
- C. FeCl₃ and CaCO₃
- D. Na₃PO₄ and NH₄Br
- E. NH₄Br
- 7. All of the following relationships are false EXCEPT
 - A. Volume is inversely proportional to the moles of gas.
 - B. Volume is directly proportional to pressure in mmHg.
 - C. Volume is directly proportional to pressure in atmospheres.
 - D. Volume is directly proportional to temperature in Kelvin.
 - E. Volume is directly proportional to the gas constant R.
- 8. Beta (β) particles have the identical properties of
 - A. helium atoms that have been stripped of their electrons.
 - B. elemental helium.
 - C. high energy radiation.
 - D. neutrons.
 - E. electrons.
- 9. Which of the following compounds is an alkane?
 - A. C_3H_6
 - B. C_3H_4
 - C. C_2H_6
 - D. C₂H₄
 - E. C_2H_2

10. When ammonium nitrate dissolves spontaneously in water the temperature of the solution	n
decreases. Which statement is true for the system?	

- A. $\Delta H < 0$ and $\Delta S < 0$
- B. $\Delta H < 0$ and $\Delta S = 0$
- C. $\Delta H = 0$ and $\Delta S > 0$
- D. $\Delta H > 0$ and $\Delta S > 0$
- E. $\Delta H > 0$ and $\Delta S < 0$
- 11. Among the H₂X molecules (e.g., H₂O, H₂S, H₂Se, H₂Te), water has the highest melting point due to the fact that it possess a significant amount of
 - A. London force.
 - B. dipole-diploe interaction.
 - C. ion-dipole interaction.
 - D. dipole-induced dipole.
 - E. hydrogen bonding.
- 12. The conjugate acid of a weak base is
 - A. amphiprotic.
 - B. a weak base.
 - C. a weak acid.
 - D. a strong acid.
 - E. a strong base.
- 13. If 6.00 g nitrogen gas (N_2) is introduced into an evacuated 2.00 L steel flask at 27 °C, what is the pressure inside the flask?
 - A. 2.64 atm
 - B. 0.246 atm
 - C. 1.83 atm
 - D. 15.8 atm
 - E. 74.1 atm
- 14. The pH of a human blood sample is found to be 7.3. What is the concentration of OH⁻ ion in this blood?
 - A. $5.01 \times 10^{-8} \text{ M}$
 - B. $2.0 \times 10^{-7} \text{ M}$
 - C. $7.3 \times 10^{-7} \text{ M}$
 - D. $5.01 \times 10^{-5} M$
 - E. $2.0 \times 10^7 \text{ M}$

15. Which one of the following is not a valid value for the magnetic quantum number of an electron in a 5 <i>d</i> subshell?	
A. 0 B. 1 C. 2	

- 16. Calculate the longest wavelength of light (nm) that can be used to remove electrons from metal surfaces if 245 kJ/mol is required to eject electrons.
 - A. 725B. 233C. 165D. 488E. 552

D. -1 E. 3

- 17. A 0.205 M aqueous solution of some unknown had an osmotic pressure of 7874 mmHg at 35 $^{\circ}$ C. Which one of the following could be the unknown compound?
 - A. CaBr₂B. NaClC. CH₃OHD. Na₂CO₃

E. C₆H₁₂O₆

- 18. A particular first-order reaction has a rate constant of 1.35 x 10^2 s⁻¹ at 25 0 C. What is the magnitude of k at 65.0 0 C if $E_a = 55.5$ kJ/mol?
 - A. $1.95 \times 10^4 \text{ s}^{-1}$ B. 358 s^{-1} C. $3.48 \times 10^{73} \text{ s}^{-1}$ D. $1.92 \times 10^3 \text{ s}^{-1}$ E. $1.35 \times 10^2 \text{ s}^{-1}$
- 19. A water sample tested positive for lead with a concentration of 35 ppm. The density of the solution is 1.00 g/mL. Which of the following statements is correct?
 - A. The solution is 35% by mass of lead.
 - B. The molarity of the solution is 35 M.
 - C. 100 g of the solution contains 35 mg of lead.
 - D. There are 35 mg of lead in 1.0 L of this solution.
 - E. 100 g of the solution contains 35 g of lead.

20. How many grams of Ca metal are produced by the electrolysis of molten CaBr ₂ using a current of 30.0 A for 8.0 hours? (Useful information: 1 mole e^- = 9.6485 x 10 ⁴ C)	
A. 0.0622 B. 17.9 C. 359 D. 89.7 E. 179	
21. Given the following proposed mechanism, predict the rate law for the overall reaction.	
$\begin{array}{c} \underline{\text{Mechanism:}} \\ 2 \ \text{NO}(g) \ \rightleftharpoons \ \text{N}_2\text{O}_2(g) & \text{fast} \\ H_2(g) \ + \ \text{N}_2\text{O}_2 \ (g) \ \rightarrow \ H_2\text{O}(g) \ + \ \text{N}_2\text{O}(g) & \text{slow} \\ H_2(g) \ + \ \text{N}_2\text{O}(g) \ \rightarrow \ H_2\text{O}(g) \ + \ \text{N}_2(g) & \text{fast} \end{array}$	
A. $rate = k[NO]^2[H_2]$ B. $rate = k[NO]^2[H_2]^2$ C. $rate = k[NO]^2$ D. $rate = k[H_2][N_2O_2]$ E. $rate = k[NO]^2[H_2]^2[N_2O_2][N_2O]$	
22. In the generation of most anions, the energy change (kJ/mol) that an electron i	S
 A. adds, positive B. adds, negative C. removes, positive D. removes, negative E. None of the above is correct. 	
23. A mixture containing 33.0 g of an unknown nonelectrolyte and 230.0 g of water has a freezing point of -1.12° C. Given $k_f = 1.86^{\circ}$ C/m for water, what is the molar mass of the unknown liquid?	ļ.
A. 0.602 g/mol B. 239 g/mol C. 54.8 g/mol D. 143 g/mol E. 138 g/mol	

24. How many unpaired electrons are in the ground state of a selenium atom?

A. 3

B. 1 C. 2 D. 0 E. 4

- 25. Which of the following will not be observed when electrons act as waves?
 - A. destructive interference
 - B. diffraction
 - C. exact position
 - D. velocity
 - E. constructive interference
- 26. A buffer is prepared by dissolving 0.350 mol of acid in 1.00 L of 1.10 M conjugate base. The pH of the solution was then found to be 11.23. Determine the K_b of the conjugate base. (Assume the final volume is 1.00 L).
 - A. 4.37 x 10⁻⁴
 - B. 1.46×10^{-13}
 - C. 1.86×10^{-12}
 - D. 5.25×10^{-3}
 - E. 5.37×10^{-4}
- 27. Sulfur, S(s), and fluorine gas react to produce gaseous sulfur hexafluoride. When a 4.50 g sample of fluorine is used, the experiment results in an 83.1% yield. How much sulfur hexafluoride was produced?
 - A. 14.4 g
 - B. 9.58 g
 - C. 4.79 g
 - D. 3.74 g
 - E. 43.1 g
- 28. Which orbital diagram represents a violation of the Pauli Exclusion Principle?
 - A. $\frac{\uparrow\uparrow}{1s} \frac{\uparrow\downarrow}{2s} \frac{---}{2p}$
 - B. $\frac{1}{1s}$ $\frac{1}{2s}$ $\frac{1}{2p}$
 - C. $\frac{\uparrow}{1s}$ $\frac{\uparrow\downarrow}{2s}$ $\frac{}{2p}$
 - D. $\frac{\uparrow\downarrow}{1s} \frac{\uparrow\downarrow}{2s} \frac{\uparrow\downarrow}{2p}$ —
 - E. $\frac{\uparrow\downarrow}{1s} \frac{\uparrow\downarrow}{2s} \frac{\uparrow}{2p} \frac{\uparrow}{2p}$

29. Of the following,	radiation has the lowest wavelength and	radiation has the
greatest energy.		

ultraviolet visible gamma

- A. visible, gamma
- B. ultraviolet, gamma
- C. gamma, visible
- D. gamma, gamma
- E. visible, ultraviolet
- 30. At 400 K, the equilibrium constant, K_D, for the reaction below is 7.0.

$$Br_2(g) + C\ell_2(g) \rightleftharpoons 2 BrC\ell(g)$$

A closed vessel at 400 K is charged with 1.00 atm of $Br_2(g)$, 1.00 atm of $C\ell_2(g)$, and 2.00 atm of BrCl(g). Which of the statements below is true?

- A. The equilibrium partial pressure of BrCl will be greater than 2.00 atm.
- B. The reaction will go to completion since there are equal amounts of Br_2 and Cl_2 .
- C. The equilibrium partial pressures of the three gases will be the same as the initial values.
- D. At equilibrium, the total pressure in the vessel will be less than the initial total pressure.
- E. The equilibrium partial pressure of Br₂ will be greater than 1.00 atm.
- 31. What is the molality of LiCl in a solution that is 9.0 % by mass LiCl and has a density of 1.00 g/mL?
 - A. 2.12 m
 - B. 9.00 m
 - C. 2.33 m
 - D. 90.0 m
 - E. 0.0900 m
- 32. What is the molar solubility of PbCl₂ in a 0.15 M solution of HCl? The value of Ksp for PbCl₂ is 1.6×10^{-5} .
 - A. $1.8 \times 10^{-4} \text{ M}$
 - B. 1.6 x 10⁻⁵ M
 - C. $1.1 \times 10^{-4} \text{ M}$ D. $2.0 \times 10^{-3} \text{ M}$

 - E. $7.1 \times 10^{-4} \text{ M}$
- 33. Which is the electron configuration belonging to the atom with the highest second ionization energy?
 - A. 1s²2s²2p⁶3s¹
 - B. $1s^22s^22p^63s^2$
 - C. $1s^22s^22p^63s^23p^1$

 - D. 1s²2s²2p⁶3s²3p⁴
 E. 1s²2s²2p⁶3s²3p⁵

- 34. The equilibrium constant expression depends on which of the following?
 - A. mechanism
 - B. stoichiometry
 - C. the quantities of reactants and products initially present
 - D. the amount of gaseous reactants present at equilibrium
 - E. stoichiometry and mechanism
- 35. All of the following relationships are false EXCEPT
 - A. $1.5 \text{ cm}^3 = 1.5 \text{ mL}$
 - B. $3.00 \text{ m}^3 < 3.00 \text{ L}$
 - C. $5.2 \text{ m}^3 = 5.2 \text{ x } 10^2 \text{ cm}^3$
 - D. 0.0455 L > 455 mL
 - E. $22 L = 22 km^3$
- 36. Identify the ions and their charges in KH₂PO₄.
 - A. K⁺, H⁺, P³⁻, O²⁻

 - B. K⁺, H²⁺, P³⁻, O⁸⁻ C. K⁺, H₂²⁺, P⁻, O₄²⁻ D. K⁺, H²⁺, PO³⁻

 - E. K^+ , $H_2PO_4^-$
- 37. A compound is found to contain 60.06% Si and 39.94% N by mass. What is its empirical formula?
 - A. Si_3N_2
 - B. Si₃N₄
 - C. Si₃N₃
 - D. Si₄N₄
 - E. Si_2N_3
- 38. How many ounces are contained in a 2.0 L soft drink bottle? (1.00 ounce = 29.6 mL)
 - A. 0.017 oz
 - B. 68 oz
 - C. 0.068 oz
 - D. 59 oz
 - E. 1.4×10^2 oz

39. Which two atoms below have the same number of neutrons?

$$^{15}_{8}$$
O, $^{16}_{8}$ O, $^{20}_{9}$ F, $^{20}_{10}$ Ne, $^{22}_{11}$ Na

- A. $^{15}_{\ 8}0$ and $^{16}_{\ 8}0$
- B. ${}^{16}_{8}$ 0 and ${}^{22}_{11}$ Na
- C. $^{20}_{9}$ F and $^{20}_{10}$ Ne
- D. ²⁰₉F and ²²₁₁Na
- E. $^{20}_{10}$ Ne and $^{22}_{11}$ Na
- 40. Combustion analysis of a hydrocarbon produced 33.01 g CO₂ and 13.51 g H₂O. What is the empirical formula of this hydrocarbon?
 - A. CH₄
 - B. CH₂
 - C. C_2H_5
 - D. C₂H₂
 - E. CH₃