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Anomalous otoliths in juveniles of common sole, Solea solea, and
Senegal sole, Solea senegalensis
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Abstract

The otoliths of wild common sole, Solea solea, and Senegal sole, Solea senegalensis, from the Tagus and the Douro estuaries,
and captive S. senegalensis were examined for the detection of anomalies. The anomalies detected were granules of crystals, a
dark coloration over the entire otolith, a dark mark concentric to the nucleus and multiple nuclei. A higher proportion of
anomalies was found in wild individuals of these species (16—63%) than is usually reported for other species. Captive S.
senegalensis exhibited an incidence of anomalies within the range previously reported for other species also reared in
captivity. The oceanographic—climatic conditions of the Portuguese coast, which cause strong and abrupt changes in water
temperature, salinity and mineral composition, may be an important factor contributing to or causing otolith anomalies.
Heatwaves, intense solar radiation and anthropogenic pollution affecting the estuarine nursery grounds may also play an

important role. However, more experimental studies are needed to elucidate what causes otolith anomalies.
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Introduction

Otoliths are small calcium carbonate structures of
biogenic origin. They are located in the inner ear of
vertebrates, immersed in endolymph. Teleost fish
have three pairs of otoliths: lapilli, asterisci and
sagittae (Moyle & Cech 1996). They play an
important role in balance and hearing, sensing
gravity, linear acceleration and sounds (Popper &
Lu 2000).

In a three-dimensional environment, such as the
aquatic environment, spatial awareness and postural
equilibrium are fundamental for locomotion. Sound
perception in the water is also crucial for the
detection of congeners, prey and predators. Thus,
functional otoliths appear to be essential for fish
survival.

However, anomalous otoliths have been known for
decades in various fish species, having been reported
for several families, namely Engraulidae, Clupeidae,
Salmonidae, Ophidiidae, Macrouridae, Gadidae,
Moronidae, Pleuronectidae, Soleidae and Scianidae

(Palmork et al. 1963; Collins & Spratt 1969; Mugiya
1972; Blacker 1974; Morales-Nin 1985; Wilson
1985; Strong et al. 1986; Gauldie 1993; Tomas &
Geffen 2003; Béarez et al. 2005; Dierking et al.
2012). Their occurrence in wild populations gen-
erally varies between 1.0% and 5.5% (Blacker 1974;
Morales-Nin 1985; Strong et al. 1986; Tomas &
Geffen 2003; Béarez et al. 2005). However, higher
values have been found for salmonids, between 18%
and 45% (Morat et al. 2008), and 66% for Solea
solea (Linnaeus, 1758) (Dierking et al. 2012). In
captive fish these values are usually high. Tomas &
Geffen (2003) reported values as high as 14% for
herring, Clupea harengus Linnaeus, 1758, raised in
the laboratory. Gauldie (1986, 1996) reported values
of 34% for captive juvenile chinook salmon and
Bowen II et al. (1999) reported values of 26—41% for
stocked lake trout.

Most works on otolith anomalies report on poly-
morphs of calcium carbonate: calcite, aragonite and
vaterite (Carlstrom 1963). They differ in the geo-
metry of the crystal: calcite is trigonal, aragonite is
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orthorhombic and vaterite is hexagonal. Normal
otoliths are aragonitic, while anomalous otoliths
display overgrowths of translucent vaterite and/or
calcite crystals (e.g. Strong et al. 1986; Gauldie
1993; Tomas & Geffen 2003; Béarez et al. 2005).

The causal mechanism behind anomalous otoliths
is still unknown. Several hypotheses have been put
forward. Gauldie (1986) suggested that otolith
malformations may be the expression of malfunc-
tioning genes. However, they may also reflect stress-
ful conditions. That may be especially true for reared
animals (Gauldie 1986, 1996; Bowen II et al. 1999;
Tomas & Geffen 2003) and wild fish living in highly
variable oceanographic conditions like those char-
acteristic of upwelling systems (Béarez et al. 2005).

There is little evidence of negative effects of these
anomalies on the survival and development of fish.
They seem to appear, behave and grow like fish with
normal otoliths (Tomas & Geffen 2003; Béarez et al.
2005). However, experimental studies are still
scarce. Because vaterite is less dense than aragonite,
it is thought that fish with anomalous otoliths may
have their balance and hearing ability affected,
particularly when only one otolith is affected and
the other is normal (Popper & Lu 2000).

39.0

In addition to structural anomalies, Berghahn
(2000) reported on coloration alterations in juvenile
flatfish inhabiting tidal pools exposed to intense
ultraviolet solar radiation. These alterations con-
sisted of hyaline zones concentric to the nucleus.

In 2005 several surveys were undertaken to study
growth of the O-group soles, Solea solea and S.
senegalensis Kaup, 1858, in the Douro and Tagus
estuaries, Portugal. An additional investigation was
carried out with reared S. senegalensis in order to
validate otolith daily increment deposition. The
occurrence of anomalies in the otoliths of these
juveniles was higher than had been reported pre-
viously for wild and captive fish. The aim of the
present study is to describe the types and incidence
of otolith anomalies in wild and captive juveniles of
S. solea and S. senegalensis.

Materials and methods

Sampling was carried out in the spring and summer
of 2005, in the Douro estuary and at two nursery
areas in the Tagus estuary (Figure 1). Isotopic
studies have shown that the juvenile cohorts of
Solea senegalensis that colonize the two nursery areas
of the Tagus, which have different timings of
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Figure 1. Location of the sampling areas, the Douro and Tagus estuaries (insert shows the location of the two nurseries of the Tagus

estuary, A and B).
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recruitment, present high site fidelity and do not
migrate between nurseries (Vinagre et al. 2008,
2011). Solea solea only colonizes nursery A in the
Tagus estuary (Figure 1). S. semegalensis was not
present in the Douro estuary. Trawls were conducted
with a 2.5 m beam trawl with 10 mm mesh size
(stretched mesh) and a 5 mm cod end. All samples
were immediately frozen.

In wild sole juveniles lapilli otoliths were used
because they are relatively thin and have well-defined
increments that are spatially more uniform than in
sagittal otoliths, which have accessory primordia
(Amara et al. 1994). In S. senegalensis born and
raised in captivity, 28 fish were removed for analysis
from day 1 to day 28 of their lives. Sagirral otoliths
were used in this case because these fish were too
young to have accessory primordia, which appear
during metamorphosis. The otoliths were removed
from the cranium, cleaned and mounted with
cyanoacrylate glue on microscope slides. They were
polished in the sagittal plane to the central primordia
with a polishing bar of aluminium oxide (Amara
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et al. 1994, 2000). They were examined using a light
microscope at 400 x or 1000 x magnification.

Results

The anomalies found were granules of crystals
(Figure 2), similar to those reported previously for
various fish, a dark coloration over the entire otolith,
a dark band concentric to the nucleus (Figure 3) and
multiple nuclei (Table I, Figure 4). Most of the
otoliths were still readable for age determination
based on the microincrements. Often, crystal gran-
ulations did not affect most of the otolith and a
reading pathway was still available. Some of the dark
otoliths were readable, others were not. The dark
band concentric to the nucleus (Figure 3) did not
affect the readability of the otoliths, similar to
multiple nuclei.

The percentage of crystal granulations (Figure 2)
was highest in Solea senegalensis from nursery B
(Tagus estuary) (Table I). The amount of otoliths
with its surface 100% granulated was highest in

Figure 2. Photograph of an otolith with structure granulations (insert shows a magnification of the affected area). Lapillus of a juvenile
Solea senegalensis captured in nursery A of the Tagus estuary in July 2005.
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Dark band

Figure 3. Photograph of an otolith with a dark band. Lapillus of a
juvenile Solea solea captured in nursery A of the Tagus estuary in
July 2005. M1, M2 and M3 are life-history marks, probably
marking hatching, mouth-opening and an unidentified event,
respectively.

S. senegalensis, both wild and captive (24-25%),
while in Solea solea the amount of affected otoliths
was lower (0-19%) (Table II). Solea solea from the
Douro estuary seem to be the least affected by
anomalies, with the exception of the dark band
concentric to the nucleus (Tables I, II, Figure 3).

Overall dark coloration was prevalent in captive
S. senegalensis (Table I). The dark band concentric to
the nucleus did not occur in captive S. senegalensis.
This anomaly was prevalent in S. solea from the
Douro estuary, with 83% of individuals affected
(Table I). It was also more common in S. solea (57—
83%) than in S. senegalensis (32—-42%) (Table I).
Multiple nuclei were not observed in wild S. senegalensis,
only in wild S. solea (2—-3%) and captive S. senegalensis
(4%) (Table I, Figure 4).

Discussion

The present work revealed that Solea solea and Solea
senegalensis juveniles from the Tagus and the Douro
estuaries present a variety of otolith anomalies and a
higher percentage of crystal granulations than those
found for wild fish of other species. In fact, the
values found for wild S. solea and S. senegalensis in
this work are similar to those reported for captive

Table I. Percentage of otoliths affected by each anomaly.

fish of other species, with the exception of those
reported by Dierking et al (2012), who observed
66% of anomalous otoliths in wild S. solea.

Captive S. senegalensis presented an amount of
crystal granulations within the range reported for
other species reared in captivity, such as herring,
Clupea harengus (Tomas & Geffen 2003), chinook
salmon (Gauldie 1986, 1996) and lake trout (Bowen
II et al. 1999). Yet, in addition, S. senegalensis
presented other anomalies, such as darkened otoliths
and multiple nuclei. Captive fish are exposed to
conditions that differ from those found in their
natural environmental and although aquacultures
try to mimic natural factors such as photoperiod,
temperature and salinity, there may be unknown
stressors affecting fish. High densities of fish and
frequent human presence may be important stressors
affecting captive fish and potentially contributing to
the development of deformities, such as otolith
anomalies. In the case of the aquaculture where
these fish were reared, formaldehyde was used as a
disinfectant. This chemical may have contributed to
or caused the high amount of anomalies in these fish.

The reason for the high amount of granulations
found in wild S. solea and S. senegalensis may be
stressful environmental conditions during the larval
stage in coastal waters or during the time spent in the
estuary as young juveniles. Béarez et al. (2005)
discussed the potential role of oceanic—climatic
upheavals such as upwelling and El Nifio/La Nifia
phenomena as the cause of otolith anomalies found
in Scianidae from Peruvian coasts. Strong and
abrupt variations in water temperature, salinity and
mineral composition may affect otolith crystalline
growth by influencing the calcification process.
Calcification is dependent on endolymph chemistry
and on the organic matrix, and thus alterations in its
homeostasis may generate different forms of crystals
(Gauldie 1986; Shivkumara et al. 2006).

The Portuguese coast is affected by upwelling. In
this area, upwelling phenomena occur in summer,
with offshore Ekman transport of surface water
(Peliz et al. 2002). Although upwelling is more
frequent in summer, it is generally considered that
winds that favour this phenomenon are a recurrent
feature of the Portuguese coast (Huthnance et al.

Location N Granulations (%) Dark otoliths (%) Dark band (%) Multiple nucleus (%)
Solea solea Tagus estuary - A 100 55 12 57 3
Solea solea Douro estuary 58 16 3 83 2
Solea senegalensis Tagus estuary - A 79 51 6 42 0
Solea senegalensis Tagus estuary - B 72 63 4 32 0
Solea senegalensis Aquaculture 28 29 43 0 4
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Table II. Percentage of otoliths affected by various degrees of granulations.

Otoliths affected by granulations

Location < 50% of surface affected > 50% of surface affected 100% of surface affected
Solea solea Tagus estuary - A 22 14 19
Solea solea Douro estuary 9 7 0
Solea senegalensis Tagus estuary - A 11 15 24
Solea senegalensis Tagus estuary - B 25 13 25
Solea senegalensis Aquaculture 4 0 25

1995). In this way, the abiotic stress caused by
recurrent upwelling phenomena may be the mechan-
ism behind the high rate and variety of anomalies
found in juvenile soles in the present study. In that

()

(b)

20 pm

Figure 4. (a) Photograph of an otolith with multiple nuclei.
Sagitta of a 15-day-old Solea senegalensis born and raised in
captivity. (b) Photograph of an otolith with double nuclei.
Lapillus of a juvenile Solea solea captured in nursery A of the
Tagus estuary in July 2005.

case, these anomalies would have their origin during
the larval stage, when sole inhabit coastal waters.
However, conditions endured by juveniles in the
estuarine nurseries are also stressful. In addition to
the general abiotic variations that are characteristic
of estuaries worldwide, Portuguese estuaries are
subjected to heatwaves, usually in summer (Asch-
mann 1973). The Tagus estuary presents a mean
water temperature in summer of 24°C, yet tempera-
ture values can rise steeply to 28°C during heat-
waves, a stressful temperature for this and other fish
species using this estuary as a nursery ground
(Gauldie 1996; Madeira et al. 2012; Vinagre et al.
2012a,b,c). Thus, the possibility of these anomalies
being instigated by stress in the estuary during the
juvenile stage cannot be rejected at this point.
Another important potential source of stress in
Portuguese estuaries such as the Tagus and the
Douro is anthropogenic pollution. However, some
authors argue that this factor is not important,
because otolith anomalies, similar to the ones found
in the present study, can also be found in palaeo-
ecological studies in areas where environmental
conditions have been stable for thousands of years
(Béarez et al. 2005). Experimental studies are
scarce. Van den Brandhof & Montforts (2010) found
that medical drugs such as carbamazepine, diclofe-
nac and metoprolol did not provoke otolith defor-
mities in zebrafish, Danio rerio (Hamilton, 1822), yet
studies are still lacking for common pollutants in
estuaries, such as heavy metals, PCBs and PAHs.
The dark band concentric to the nucleus (Figure 3)
observed only in wild individuals in the present study
has similarities to the hyaline concentric zones
reported by Berghahn (2000), and can be attributed
to the effect of solar ultraviolet radiation. The fact
that captive S. senegalensis did not present this
anomaly is in accordance with this theory. The fact
that this dark band was very frequent in the otoliths
of wild fish in the present study is also consistent with
the theory of Berghahn (2000), as Portugal has one of
the highest rates of sunny days per year in Europe.
This band is located in an area of the otolith con-
sistent with settlement time. According to Berghahn
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(2000), settlement would be the stage most exposed
to ultraviolet radiation.

The study of anomalies in fish otoliths urgently
requires experimental work. The manipulation of
variables in a controlled environment would eluci-
date which factors control otolith calcification.
Experiments with contaminants could also reveal if
otolith anomalies reflect environmental pollution
and can be used as a biological indicator for
environmental monitoring. The functional implica-
tions of otolith deformities could also be assessed
experimentally. Research in this direction would
increase our knowledge on fish welfare in aquacul-
ture and the natural environment.
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