
Class Note: Chapter 4

Basic Database Access with SQL

(Updated on March 2009 based upon Oracle 11g, and on May 12, 2016, June 25, 2018)

[The “class note” is the typical material I would prepare for my face-to-face class. Since

this is an Internet based class, I am sharing the notes with everyone assuming you are in

the class.]

Please note this class/chapter is the most essential in learning Oracle. This class note is

organized in a tutorial format. Students are urged to follow the exercises in chapter, step

by step, in order to quickly learn the concept and operation. I would highly recommend

that you retype the SQL command in your computer as doing so reinforce the learning

and understanding. You will be amazed by yourself if you can do those exercises as

described in this class.

To get work done, applications must communicate with Oracle to enter and
retrieve data, and do so in a way that protects the integrity of the database's
data. This chapter introduces the basic concepts of how applications use SQL
statements and encompassing transactions to interact with an Oracle database
system.

Chapter Prerequisites

Support Files for Hands-On Exercises in This Course

All subsequent chapters for this course contain hands-on exercises that
provide you with invaluable experience using Oracle database server. At the
beginning of most chapters, a section called "Chapter Prerequisites" explains the
steps necessary to prepare for the chapter's exercises. Typically, you'll be asked
to use Oracle's SQL*Plus utility to run a SQL command script that builds a
practice schema for the chapter, complete with a set of tables and other
supporting database objects. Most scripts also set up custom display formats for
the SQL*Plus session, so that the results produced by the chapter's exercises
are easy to read.

CAUTION

Unless otherwise indicated, after you successfully run a chapter's supporting

SQL command script using SQL*Plus, do not exit the SQL*Plus session. You should use

the SQL *Plus session to complete the exercises in the chapter, starting with the first

exercise in the chapter, all the way through the final exercise in the chapter. If you do not

have time to complete all exercises in the chapter during one sitting, leave your computer

running and the SQL*Plus session open so that you can pick up where you left off when

you have more time. If you must shut down your computer, the next time that you start

SQL*Plus you must rerun the chapter's SQL command script (to refresh the necessary

data and SQL*Plus display settings) and then repeat all exercises in the chapter, starting

with the first exercise again.

You will need to download the supplemental files, and then unzip
(extract) them into a location in your own computer. To download, either go the
schedule page of the course or directly copy the following link to your browser:

 http://www.eiu.edu/~pingliu/tec5323/Resources/tec5323_code.zip

From now on, we assume you have already downloaded and unzipped
your supplemental files.

To practice the hands-on exercises in this chapter, you need to start
SQL*Plus and run the following command script at SQL > prompt:

SQL>location\Sql\chap04.sql

Where location is the file directory where you expanded the support
archive that accompanies this book. For example, after starting SQL*Plus and
connecting as SCOTT/tiger, you can run this chapter's SQL command script
using the SQL*Plus command @, as in the following example (assuming that
your chap04.sql file is in “C:\temp\Sql” folder):

SQL> @C:\temp\Sql\chap04.sql;

Follow the instructions on screen. The script will ask you for the
password of user “SYSTEM.” This password is the same as what you entered
while you installed Oracle database on your computer. Once the script
completes successfully, leave the current SQL*Plus session open and use it to
perform this chapter's exercises in the order that they appear.

 NOTE:

This is a typical way of developing and deploying a database design in software

projects.

4.1 What Is SQL?

To accomplish work with Oracle, applications (software) must use Structured
Query Language (SQL) commands. SQL (pronounced either as "sequel" or "ess-
que-ell") is a relatively simple command language that database administrators,
developers, and application developers or application users (program) can use to

 Retrieve, enter, update, and delete database data

 Create, alter, and drop database objects

 Restrict access to database data and system operations

The only way that an application can interact with an Oracle database server
is to issue a SQL command. Sophisticated graphical user interfaces might hide
SQL commands from users and developers, but under the covers, an application
always communicates with Oracle using SQL.

4.1.1 Types of SQL Commands

The four primary categories of SQL commands are DML, transaction
control, DDL, and DCL commands.

 Data manipulation or data modification language (DML) commands are
SQL commands that retrieve, insert, update, and delete table rows in an
Oracle database. The four basic DML commands are SELECT, INSERT,
UPDATE, and DELETE. Subsequent sections of this chapter provide
you with a thorough introduction to these four commands.

 Applications that use SQL and relational databases perform work by
using transactions. A database transaction is a unit of work
accomplished by one or more related SQL statements. To preserve the
integrity of information in a database, relational databases such as
Oracle ensure that all work within each transaction either commits or
rolls back. An application uses the transaction control SQL commands
COMMIT and ROLLBACK to control the outcome of a database
transaction. Subsequent sections of this chapter explain how to design
transactions and use transaction control SQL commands.

 Data definition language (DDL) commands create, alter, and drop
database objects. Most types of database objects have corresponding
CREATE, ALTER, and DROP commands. In Chapter 7, we will have
more information about, and examples of, several DDL commands.

 An administrative application uses data control language (DCL)
commands to control user access to an Oracle database. The three
most commonly used DCL commands are the GRANT, REVOKE, and
SET ROLE commands. In Chapter 9, we will discuss more about, and
provide examples of, these DCL commands.

4.1.2 Application Portability and the ANSI/ISO SQL Standard

The ANSI/ISO SQL standard defines a generic specification for SQL.
Most commercial relational database systems, including Oracle and Microsoft
SQL Server, support ANSI/ISO standard SQL. When a database supports the
SQL standard and an application uses only standard SQL commands, the
application is said to be portable. In other words, if you decide to substitute
another database that supports the ANSI/ISO SQL standard, the application
continues to function unmodified.

The ANSI/ISO SQL-92 standard has four different levels of compliance:
Entry, Transitional, Intermediate, and Full. Oracle complies with the SQL-92
Entry level, and has many features that conform to the Transitional,
Intermediate, and Full levels. Oracle also has many features that comply with
the SQL3 standard, including its new object-oriented database features.

Oracle also supports many extensions to the ANSI/ISO SQL-92
standard. Such extensions enhance the capabilities of Oracle. SQL
extensions can take the form of nonstandard SQL commands or just
nonstandard options for standard SQL commands. However, understand that
when an application makes use of proprietary Oracle SQL extensions, the
application is no longer portable—most likely, you would need to modify and
recompile the application before it will work with other database systems.

Now that you have a general understanding of SQL, the remaining
sections in this class introduce you to the SQL commands that you will most
often use to access an Oracle database: SELECT, INSERT, UPDATE,
DELETE, COMMIT, and ROLLBACK.

4.2 Retrieving Data with Queries

The most basic SQL statement is a query. A query is a SQL statement
that uses the SELECT command to retrieve information from a database. A
query's result is the set of columns and rows that the query requests from a
database server. For example, the following query retrieves all rows and
columns from the ORDERS table:

SQL> SELECT * FROM orders;

In order for you to see the above results, you will need to run

the chap04.sql script as described at the Chapter Prerequisites. If

you did, you would be able to see a similar screen as follows:

 SQL> SELECT * FROM orders;

 ID C_ID ORDERDATE SHIPDATE PAIDDATE S

---------- ---------- --------- --------- --------- -

 1 1 18-JUN-99 18-JUN-99 30-JUN-99 F

 2 2 18-JUN-99 B

 3 3 18-JUN-99 18-JUN-99 21-JUN-99 F

 4 4 19-JUN-99 21-JUN-99 21-JUN-99 F

 5 5 19-JUN-99 19-JUN-99 28-JUN-99 F

 6 6 19-JUN-99 19-JUN-99 F

 7 7 19-JUN-99 B

 8 8 20-JUN-99 20-JUN-99 20-JUN-99 F

 9 9 21-JUN-99 B

 10 2 21-JUN-99 22-JUN-99 22-JUN-99 F

 11 4 22-JUN-99 22-JUN-99 F

 12 7 22-JUN-99 23-JUN-99 30-JUN-99 F

 13 4 22-JUN-99 B

 14 1 23-JUN-99 25-JUN-99 F

14 rows selected.

4.2.1 The Structure of a Query

Although the structure of a SELECT statement can vary, all queries have
two basic components: a SELECT clause and a FROM clause.

A query's SELECT clause specifies a column list that identifies the
columns that must appear in the query's result set. Each column in the
SELECT clause must correspond to one of the tables in the query's FROM
clause. A SELECT clause can also contain expressions that derive
information from columns using functions or operators that manipulate
table data. Subsequent sections of this chapter explain how to build
expressions in a query's SELECT clause.

A query's FROM clause specifies the rows for the query to target.
The FROM clause of a typical query specifies a list of one or more tables.
Simple queries target just one table, while more advanced queries join
information by targeting multiple related tables. Alternatively, a FROM
clause in a query can specify a subquery (a nested or inner query) to build
a specific set of rows as the target for the main (or outer) query. When you
use a subquery in a query's FROM clause, SELECT clause expressions in
the outer query must refer to columns in the result set of the subquery.

4.2.2 Building Basic Queries

The following set of hands-on exercises teaches you how to build basic
queries and several related functions, including the following:

 How to retrieve all columns and rows from a table

 How to retrieve specific columns of all rows in a table

 How to "describe" the structure of a table

 How to specify an alias for a column in a query

EXERCISE 4.1: Retrieving All Columns and Rows from a Table

Using SQL*Plus, enter the following query to retrieve all columns and rows
from the ORDERS table.

SELECT * FROM orders;

You have seen the results of the query above. For the sake of
easy understanding, let us reprint the results as follows:

The wildcard asterisk character (*) in the SELECT clause indicates that
the query should retrieve all columns from the target table.

The above query is very simple, and thus it is easy to correct if
we make a mistake in typing the command. It may be frustrating if we
have to deal with more complex SQL query in the future. One helpful
SQL*Plus feature is to invoke a text editor. The following shows you
how to do it.

At SQL prompt, type “ed” —It will start your default text editor.

SQL> SELECT * FROM orders;

 ID C_ID ORDERDATE SHIPDATE PAIDDATE S

---------- ---------- --------- --------- --------- -

 1 1 18-JUN-99 18-JUN-99 30-JUN-99 F

 2 2 18-JUN-99 B

 3 3 18-JUN-99 18-JUN-99 21-JUN-99 F

 4 4 19-JUN-99 21-JUN-99 21-JUN-99 F

 5 5 19-JUN-99 19-JUN-99 28-JUN-99 F

 6 6 19-JUN-99 19-JUN-99 F

 7 7 19-JUN-99 B

 8 8 20-JUN-99 20-JUN-99 20-JUN-99 F

 9 9 21-JUN-99 B

 10 2 21-JUN-99 22-JUN-99 22-JUN-99 F

 11 4 22-JUN-99 22-JUN-99 F

 12 7 22-JUN-99 23-JUN-99 30-JUN-99 F

 13 4 22-JUN-99 B

 14 1 23-JUN-99 25-JUN-99 F

14 rows selected.

 Then, you will see the following screen for your default text
editor (in Windows, it is Notepad.)

You may make whatever change you want, within your text editor.

Save the changes, and exit. You will go back to SQL*Plus.

At the SQL> promot, you can type “/”. It will execute the revised SQL

command for you.

I found the above extremely handy.

If you are tired of too much junk on your SQL*Plus screen, you may

clean the screen by issue the following SQL command:

SQL>cl scr;

I use “cl scr” very often.

EXERCISE 4.2: Retrieving Specific Columns from a Table

To retrieve specific columns from all rows in a table, a query's SELECT
clause must explicitly specify the name of each column to retrieve. For
example, enter the following statement to retrieve just the ID and
ORDERDATE columns for all rows in the ORDERS table.

SELECT id, orderdate FROM orders;

The result set is as follows:

EXERCISE 4.3: Using the SQL*Plus DESCRIBE Command

If you are using SQL*Plus and you do not know the names of the
columns in a table that you would like to query, use the special
SQL*Plus command DESCRIBE to output the structure of the table.
Enter the following DESCRIBE statement to display the column names
of the ORDERS table (as well as additional information for each
column).

DESCRIBE orders;

The results of the previous command should be similar to the
following:

SQL> SELECT id, orderdate FROM orders;

 ID ORDERDATE

---------- ---------

 1 18-JUN-99

 2 18-JUN-99

 3 18-JUN-99

 4 19-JUN-99

 5 19-JUN-99

 6 19-JUN-99

 7 19-JUN-99

 8 20-JUN-99

 9 21-JUN-99

 10 21-JUN-99

 11 22-JUN-99

 12 22-JUN-99

 13 22-JUN-99

 14 23-JUN-99

14 rows selected.

EXERCISE 4.4: Specifying an Alias for a Column

To customize the names of the columns in a query's result set, you have
the option of specifying an alias (an alternate name) for each column (or
expression) in the query's SELECT clause. To rename a column or
expression in the SELECT clause, just specify an alias after the list item.

NOTE

You must delimit the alias with double quotes if you want to specify the

case, spacing, or include special characters in an alias.

To use a column alias, enter the following query, which specifies an
alias for the ONHAND column of the PARTS table.

SELECT id, onhand AS “IN STOCK”

FROM parts;

The result set is as follows:

SQL> SELECT id, onhand AS "IN STOCK"

 2 FROM parts;

 ID IN STOCK

---------- ----------

 1 277

 2 143

 3 7631

 4 5903

 5 490

Name Null? Type

--- -------- ------

ID NOT NULL

NUMBER(38)

C_ID NOT NULL

NUMBER(38)

ORDERDATE NOT NULL DATE

SHIPDATE DATE

PAIDDATE DATE

STATUS

CHAR(1)

As this example demonstrates, you can precede a column alias
with the optional keyword AS to make the alias specification more
readable.

4.2.3 Building Expressions in a Query's SELECT Clause

In addition to simple column specifications, the SELECT clause of a
query can also include expressions. An expression is a SQL construct that
derives a character string, date, or numeric value. There are several different
types of constructs that you can use to build expressions in a query's
SELECT clause and return the resulting data in the query's result set,
including operators, SQL functions, and decoded expressions. The next few
sections provide a brief introduction to SELECT clause expressions.

EXERCISE 4.5: Building SELECT Clause Expressions with the Concatenation String

Operator

An operator is a symbol that transforms a column value or combines it
somehow with another column value or literal (an explicit value). For
example, a simple way to build an expression in a SELECT clause is to use
the concatenation operator—two solid vertical bars (||)—to concatenate
(combine) character columns and/or string literals.

Enter the following query, which includes a simple SELECT clause
expression. For each record in the CUSTOMERS table, the expression
concatenates the LASTNAME field with a comma and a blank space
(delimited by single quotes), and then the resulting string with the
FIRSTNAME field. The expression also has a column alias to make its
column heading in the result set more readable.

SELECT lastname || ', ' || firstname AS name

FROM customers;

The result set is as follows:

NOTE

The expressions on which an operator acts are called operands.
The concatenation operator is an example of a binary
operator—an operator that takes two operands and creates a
new result. An operand that creates a value from a single
operand is called a unary operator.

EXERCISE 4.6: Building SELECT Clause Expressions with Arithmetic Operators

Oracle's unary and binary arithmetic operators are listed in Table 4-1.
An arithmetic operator accepts one or more numeric operands and
produces a single numeric result.

Let's try a query that contains a SELECT clause expression that
uses a binary arithmetic operator. Enter the following query, which
determines how many of each part remains in inventory above the
corresponding part's reorder threshold.

SELECT id, onhand, reorder, onhand - reorder AS threshold

FROM parts;

SQL> SELECT lastname || ', ' || firstname AS name

 2 FROM customers;

NAME

--

Ayers, Jack

Clay, Dorothy

Elias, Juan

Foss, Betty

Haagensen, Dave

Joy, Harold

Musial, Bill

Sams, Danielle

Schaub, Greg

Wiersbicki, Joseph

10 rows selected.

The result set is as follows:

SQL> SELECT id, onhand, reorder, onhand - reorder AS threshold FROM parts;

 ID ONHAND REORDER THRESHOLD

---------- ---------- -- ----------

 1 277 50 227

 2 143 25 118

 3 7631 1000 6631

 4 5903 1000 4903

 5 490 200 290

Arithmetic Operator Description

+x (unary) Indicates that x is positive

-x (unary) Indicates that x is negative

x II y (binary) Concatenates x and y

x + y (binary) Adds x and y

x - y (binary) Subtracts y from x

x * y (binary) Multiplies x by y

x / y (binary) Divides x by y

TABLE 4-1. The Arithmetic Operators Supported by Oracle

EXERCISE 4.7: Building SELECT Clause Expressions with SQL Functions

You can also build an expression in a query's SELECT clause by using one
or more of SQL's built-in functions. A function takes zero, one, or multiple
arguments and returns a single value. There are two general types of SQL
functions that you can use with queries: single-row functions and group
functions.

A single-row (or scalar) function returns a value for every row that is part
of a query's result set. Oracle supports many different categories of single-
row SQL functions, including character, date, numeric, and conversion
functions. For example, enter the following query, which uses the SQL
functions UPPER and LOWER in SELECT clause expressions to display
the company name in uppercase letters for each customer record and the
last name of each customer record in lowercase letters.

SELECT UPPER(companyname) AS companyname,

LOWER(lastname) AS lastname

FROM customers;

The result set is as follows:

If your display is not as neat as above, you may need the following SQL
commands and rerun the above exercise:

SQL> COLUMN COMPANYNAME FORMAT A30;

SQL>COLUMN LASTNAME FORMAT A15;

The above commands define the width of the columns for display within
SQL* Plus. They do not change any data from the table. You may do the
same with other columns if you see the needs.

Now enter the following query, which uses two numeric single-row SQL
functions in SELECT clause expressions, SQRT and LN, to display the
square root of 49 and the natural logarithm of 10, respectively.

SELECT SQRT(49), LN(10)

FROM DUAL;

The result set is as follows:

NOTE

The previous query targets a special table called DUAL that is present in
every Oracle database. DUAL is an empty table, consisting of one column

COMPANYNAME LASTNAME

------------------------------ ---------------

MCDONALD CO. joy

CAR AUDIO CENTER musial

WISE TRUCKING sams

ROSE GARDEN INN elias

FOSS PHOTOGRAPHY foss

PAMPERED PETS schaub

KEY LOCKSMITH wiersbicki

PARK VIEW INSURANCE ayers

KENSER CORP. clay

DAVE'S TREE SERVICE haagensen

10 rows selected.

 SQRT(49) LN(10)
---------- ----------

 7 2.30258509

and one row, which you can use to satisfy the requirement for a table in a
query's FROM clause. DUAL is useful for queries that just perform
arithmetic or use 3 SQL function to return a value.

A group (or aggregate) function returns an aggregate value for all rows
that are part of a query's result set. For example, enter the following query,
which uses the group SQL functions COUNT, MAX, MIN , and AVG to
return the number of records in the PARTS table, as well as the maximum,
minimum, and average UNITPRICE for records in the PARTS table,
respectively.

SELECT COUNT(id) AS count,

MAX(unitprice) AS max_price,

MIN(unitprice) AS min_price,

AVG(unitprice) AS ave_price

FROM parts;

The result set is as follows:

The example queries in this section have introduced just a few of the
many SQL functions that are available with Oracle. See your Oracle
documentation for a complete list of the SQL functions that you can use
when building SQL statements.

EXERCISE 4.8: Working with Nulls in SELECT Clause Expressions

A null indicates the absence of a value. It does not mean zero, however.
For example, the SHIPDATE field of a sales record in the ORDERS table
will be null until the order ships, after which you can replace the null with an
actual date value. When building SELECT clause expressions for queries,
you must pay special attention to the possibility of nulls; otherwise you might
obtain inaccurate or nonsense query results.

In most cases, an expression that includes a null evaluates to null. For
example, if you input the following SQL command

SELECT id,fax FROM customers;

You will see the following result as follows:

 COUNT MAX_PRICE MIN_PRICE AVE_PRICE
---------- ---------- ---------- ----------

 5 4895 99 1718.6

To explicitly handle nulls in SELECT clause expressions, you can use
the special scalar SQL function NVL to return a value of your choice when a
column is null. For example, enter the following query that substitutes the
string literal "UNKNOWN" when the FAX field of a record in the
CUSTOMERS table is null.

SELECT id,NVL(fax,’UNKNOWN’)AS Fax

FROM customers;

The result set is as follows:

 ID FAX

---------- ------------------------------

 1 UNKNOWN

 2 775-859-2121

 3 203-955-9532

 4 214-907-3188

 5 215-543-9800

 6 602-617-7321

 7 718-445-8799

 8 UNKNOWN

 9 916-672-8753

 10 UNKNOWN

10 rows selected.

 ID FAX
---------- ------------------------------

 1

 2 775-859-2121

 3 203-955-9532

 4 214-907-3188

 5 215-543-9800

 6 602-617-7321

 7 718-445-8799

 8

 9 916-672-8753

 10

10 rows selected.

EXERCISE 4.9: Using Decoded SELECT Clause Expressions

A decoded expression is a special type of SELECT clause expression that
you use to translate codes or symbols in a column. For example, enter the
following query, which includes a decoded SELECT clause expression to
convert the codes F and B of the STATUS column in the ORDERS table to
the corresponding string literals FILLED and BACKORDERED.

SELECT id, DECODE (status,‘F','FILLED','B','BACKORDERED’, ‘OTHER’)

AS Status FROM orders;

The result set is as follows:

If you see a line between some rows, you may find the following
SQL*Plus command useful:

SQL>Set pagesize 60;

The above command defines the number of lines SQL*Plus displays
before it breaks.

The above example demonstrates that to specify a decoded expression
in a SELECT clause, you use the DECODE () keyword and several
parameters. The first parameter is the expression to be evaluated, which
can be as simple as a column in a table. The second parameter is a
comma-separated list of value pairs. For each possible value of the
expression in the first parameter, specify a corresponding display value. The

 ID STATUS

---------- -----------

 1 FILLED

 2 BACKORDERED

 3 FILLED

 4 FILLED

 5 FILLED

 6 FILLED

 7 BACKORDERED

 8 FILLED

 9 BACKORDERED

 10 FILLED

 11 FILLED

 12 FILLED

 13 BACKORDERED

 14 FILLED

14 rows selected.

final parameter, which is optional, is a default display value for all
expression values that are not specified in the list of value pairs. In the
example here, the default display value is the string literal "OTHER."

4.2.4 Retrieving Specific Rows from Tables

So far, all of the example queries in this chapter show how to retrieve
every row from a table. Optionally, a query can limit the result set to those
rows in the target table that satisfy a WHERE clause condition. If the Boolean
condition of the WHERE clause evaluates to TRUE for a particular row,
Oracle includes the row in the query's result set. For example, the following
query includes a WHERE clause condition that limits the result set to only
those records in the ORDERS table that have a STATUS code equal to B.

SELECT id AS backorders, orderdate

FROM orders

WHERE status ='B';

The result set is as follows:

NOTE

If you submit a query and omit a WHERE clause, Oracle selects
all rows from the targets specified in the query's FROM clause.

The next three exercises explain how to build WHERE clause conditions with
relational operators, subqueries, and logical operators.

EXERCISE 4.10: Building WHERE Clause Conditions with Relational Operators

Oracle supports several relational operators that you can use to build WHERE
clause conditions. A relational (or comparison) operator compares two operands

BACKORDERS ORDERDATE

---------- ---------

 2 18-JUN-99

 7 19-JUN-99

 9 21-JUN-99

 13 22-JUN-99

to determine whether they are equal, or if one operand is greater than the other,
A condition that uses a relational operator produces a Boolean value of TRUE or
FALSE; however, if a null is involved in the condition, some relational operators
produce an UNKNOWN result. Table 4-2 lists the relational operators that Oracle
supports.

Relational Operator Description

x = y Determines if x equals y*

x ! = y

x ^ = y

x <>y

Determines if x is not equal to y*

x <y Determines if x is less than y.*

x >= y Determines if x is greater than or equal to y*

x <= y Determines if x is less than or equal to y.

 x lN
 (list | subquery)

Determines if the operand x is present in the list of
values specified or returned by a subquery.

 x NOT IN
 (list | subquery)

Determines if operand x is not present in the list of
values specified by a subquery. The evaluation is
FALSE when a list member is null.

x {=|!=|>|<|>=|<=}

{ ANY l SOME}

(list l subquery)

Compares the operand x to the list of values
specified or returned by a subquery. The
evaluation is FALSE when a subquery does not
return any rows. The keywords ANY and SOME
are equivalent.

x
Compares the operand x to the list of values

{=|!=|>|<|>=|<=}

ALL (list l subquery)

specified or returned by a subquery. The
evaluation is TRUE when the subquery does not
return any rows.

x BETWEEN y AND z
Determines if x falls within the exclusive range of y
and z.

x NOT BETWEEN y AND z
Determines if x does not fall within the exclusive
range of y and z.

EXISTS (subquery)

Determines if the subquery returns rows. The
evaluation is TRUE when the subquery returns
one or more rows, and FALSE when the subquery
does not return any rows.

x LIKE y [ESCAPE z)

Determines if x matches the pattern y. y can
include the wildcard characters % and _.
% matches any string of zero or more characters,
except null. _ matches any single character. Use
the optional ESCAPE parameter only when you
want Oracle to interpret literally a wildcard
character as the escape character.

x NOT LIKE y [ESCAPE z]

Determines if x does not match the pattern y. y can
include the wildcard characters % and _, and you
can include the optional ESCAPE parameter
(explained above).

x IS NULL Determines if x is null.

x > y Determines if x is greater than y.*

x IS NOT NULL Determines if x is not null.

* If y is subquery, it must return a single row.

TABLE 4-2. The Relational Operators Supported by Oracle

Let's try a couple of queries that use relational operators to build
WHERE clause conditions. First, enter the following query to display the
ID and ORDERDATE of all records in the ORDERS tables that have an
ORDERDATE greater than June 21, 1999.

SELECT id, orderdate

FROM orders

WHERE orderdate > '21-JUN-99';

The result set is as follows:

Next, enter the following query to list the ID and LASTNAME of all
customer records that do not have a FAX number. Notice that the WHERE
clause condition uses the special IS NULL relational operator to test for the
presence of a null in each record.

SELECT id, lastname FROM customers

WHERE fax IS NULL;

The result set is as follows:

EXERCISE 4.11: Building WHERE Clause Conditions with Subqueries

Some queries need to retrieve the answers based on multiple-part
questions. For example, how would you build a query that reports the IDs
of all orders placed by customers of a particular sales representative? This
is really a two-part question, because the ORDERS table does not contain
a field to record the sales representative that made the sale. However, the
ORDERS table does include a field for the customer that made the
purchase, and the CUSTOMERS table uses the S_ID column to indicate
the sales representative for each customer record. Therefore, you can
answer the original question by first building a list of customers that

 ID ORDERDATE

---------- ---------

 11 22-JUN-99

 12 22-JUN-99

 13 22-JUN-99

 14 23-JUN-99

 ID LASTNAME

---------- ---------------

 1 Joy

 8 Ayers

 10 Haagensen

correspond to the sales representative, and then using the list to retrieve
the IDs of the orders that correspond to just those customers.

To answer a multiple-part question in SQL with just one query, the
query can use a WHERE clause condition with a subquery. A subquery is
a technique that you can use to build an operand for the right side of a
WHERE clause condition that uses a relational operator. When a WHERE
clause condition uses a subquery, Oracle evaluates the subquery (or
inner, nested query) first to return a value or list of values to the relational
operator before evaluating the main (or outer) query.

Let's try a query that uses a subquery to answer the question asked
at the beginning of this section. Enter the following query, which uses a
WHERE clause condition with the relational operator IN and a subquery to
report the ID and ORDERDATE of all orders placed by customers of sales
representative number 2.

SELECT id, orderdate

FROM orders

WHERE c_id IN (SELECT id FROM customers WHERE s_id = 2);

The result set is as follows:

Now consider what you would do if you needed to answer the
previous question, but you did not know the ID of the sales representative
with the last name "Jonah." In this case, you would need to answer a
three-part question with a single query. First, you would need to get the ID
of the sales representative named Jonah, then get a list of Jonah's
customers, and then list the ID and ORDERDATE that correspond to
those customers only. To accomplish this feat with a single query, the
subquery of the main query must use a subquery itself. Enter the following
query to try this out for yourself.

SELECT id, orderdate

FROM orders

WHERE c_id IN (SELECT id FROM customers WHERE s_id = (SELECT

id FROM salesreps WHERE lastname = 'Jonah'));

The result set is as follows:

 ID ORDERDATE

---------- ---------

 4 19-JUN-99

 11 22-JUN-99

 13 22-JUN-99

Notice that the innermost subquery uses the equals relational operator
(=) and a subquery to determine the ID of the sales representative with the
last name "Jonah." Oracle supports the use of a subquery with many
relational operators—see Table 4-2 for a complete list of all relational
operators that support subqueries, and their corresponding descriptions.

EXERCISE 4.12: Building Composite WHERE Clause Conditions with Logical

Operators

Oracle also supports the use of the logical operators AND and OR to
build a composite WHERE clause condition—a condition that includes two
or more conditions.

 The AND operator combines the results of two conditions. The entire
condition evaluates to TRUE only when both conditions on either side of
the AND operator are TRUE. It evaluates to FALSE when either or both
conditions are FALSE, and it evaluates to UNKNOWN when both
conditions are null, or when either condition is TRUE and the other is
null.

 The OR operator combines the results of two conditions. The entire
condition evaluates to FALSE only when both conditions on either side
of the OR operator are FALSE. It evaluates to TRUE when either or both
conditions are TRUE, and it evaluates to UNKNOWN when both
conditions are null, or when either condition is FALSE and the other is
null.

Enter the following query, which uses the AND logical operator to build a
composite WHERE clause condition that reports the ID and ORDERDATE
of records in the ORDERS table that were ordered on or after June 1,
1999, and have a STATUS equal to B (on back order).

SELECT id, orderdate

FROM orders

WHERE orderdate >= ‘1-JUN-99’ AND status = ‘B’;

 ID ORDERDATE
---------- ---------

 4 19-JUN-99

 11 22-JUN-99

 13 22-JUN-99

The result set is as follows:

NOTE

Oracle also supports the logical operator NOT so that you can
build a query with a WHERE clause condition that tests for
records that contradict a condition.

4.2.5 Grouping and Sorting Data within a Query's Result Set

The previous exercises in this chapter teach you how to include specific
columns and rows in a query's result set. The next two sections explain how
to format the output of a query's result set by grouping and sorting the
records.

EXERCISE 4.13: Grouping Records in a Query's Result Set

Many queries need to answer questions based on aggregates or
summaries of information rather than the details of individual records in a
table. To group data in a query's result set, the query must include a
GROUP BY clause. The list of columns in the GROUP BY clause specify
how to aggregate the rows in the result set. A GROUP BY clause can list
any column name in the table that appears in the query's FROM clause;
however, a GROUP BY clause cannot reference aliases defined in the
SELECT clause.

When you build the SELECT clause of a query that includes a GROUP
BY clause, you can include an expression that uses a group function,
including the functions AVG, COUNT, MAX, MIN, STDDEV, SUM, and
VARIANCE. You can also include an unaggregated column or expression
in the SELECT clause, but the same column or expression must be one of
the columns or expressions in the GROUP BY clause.

 ID ORDERDATE
---------- ---------

 2 18-JUN-99

 7 19-JUN-99

 9 21-JUN-99

 13 22-JUN-99

Let's try grouping some data in a query's result set by entering the
following query, which uses the group SQL function COUNT and a
GROUP BY clause to display the number of orders placed by each
customer.

SELECT c_id AS customer,

COUNT(id) AS orders_placed

FROM orders

GROUP BY c_id;

The result set is as follows:

To eliminate selected groups from a query's result set, you can add a
HAVING clause to the query's GROUP BY clause. Much like a WHERE
clause condition, Oracle includes only those groups in a query's result set
that evaluate to TRUE for the HAVING clause condition. For example,
enter the following query, which displays the ID and number of orders
placed by customers that have placed more than one order.

SELECT c_id AS customer,

COUNT(id) AS orders_placed

FROM orders

GROUP BY c_id

HAVING COUNT(id) > 1;

The result set is as follows:

 CUSTOMER ORDERS_PLACED

---------- -------------

 1 2

 6 1

 2 2

 4 3

 5 1

 8 1

 3 1

 7 2

 9 1

9 rows selected.

NOTE

A query can use both a WHERE clause and the HAVING
clause of a GROUP BY clause to eliminate data from the
query's result set. Before forming groups, Oracle first
removes all rows from the query's result set that do not
satisfy the condition of the WHERE clause. Next, Oracle
uses the expressions in the GROUP BY clause to form
summary groups. Finally, Oracle removes the groups in the
result set that do not satisfy the condition of the HAVING
clause.

EXERCISE 4.14: Ordering Records in a Query's Result Set

A query can sort the rows in its result set in ascending or descending
order by including an ORDER BY clause. You can sort rows by any
number of columns and expressions that are in the query's SELECT
clause, or by any column in the target table even if it is not included in the
SELECT clause. In the ORDER BY clause, specify a comma-separated
list of the columns and expressions to sort on, either by name, by their
position in the SELECT clause, or by their alias in the SELECT list, and
indicate whether you want ascending (ASC) or descending (DESC] order
for each item. The default sort order for all columns and expressions in an
ORDER BY clause is ascending order.

Enter the following query, which displays each customer record's ID,
LASTNAME, and ZIPCODE, sorted in ascending order by the record's
ZIPCODE.

SELECT id, lastname, zipcode

FROM customers

ORDER BY zipcode ASC;

The result set is as follows:

 CUSTOMER ORDERS_PLACED
---------- -------------

 1 2

 2 2

 4 3

 7 2

NOTE

When you order query's result set by an expression that returns
nulls, Oracle places the rows with nulls last in the result set when
you order in ascending order; when you order in descending order,
Oracle places the rows with nulls first in the result set.

4.2.6 Joining Data in Related Tables

The previous examples in this chapter are all queries that target data from
only one table. When you work with a relational database especially a large
database, you will face the task to pull information from multiple tables. That
is where fun starts.

A query can join information from multiple related tables. A join is a query
that combines rows from two or more tables. Oracle database performs a join
whenever multiple tables appear in the FROM clause of the query. The select
list of the query can select any columns from any of these tables. If any two of
these tables have a column name in common, then you must qualify all
references to these columns throughout the query with table names to avoid
ambiguity.

When you want to join information from N number of tables, include a
comma-separated list of the tables to join in the query's FROM clause. The
query's WHERE clause should have (N-1) join conditions that explain how to
relate the data in the tables. The join query's SELECT clause can contain
columns and expressions that refer to some or all of the columns in the target
tables; however, when two columns in different tables have identical names,
you must qualify references to these columns throughout the query with a
table name to avoid ambiguity. The following two exercises contain examples

 ID LASTNAME ZIPCODE

---------- --------------- -------------------------

 3 Sams 06103

 7 Wiersbicki 11220

 5 Foss 19144

 1 Joy 21209

 10 Haagensen 44124

 8 Ayers 66604

 4 Elias 75252

 6 Schaub 85023

 2 Musial 89501

 9 Clay 95821

10 rows selected.

of these syntax rules and explain two specific types of join queries: inner joins
and outer joins.

EXERCISE 4.15: Building an Inner Join of Two Tables

An inner join (sometimes also known as simple join) combines the rows of
two related tables based on a common column (or combination of common
columns). The result set of an inner join does not include rows in either table
that do not have a match in the other table.

To specify an inner-join operation, use a WHERE clause condition that
relates the common columns in each table as operands on either side of the
equality operator. For example, enter the following query that performs an
inner join of the CUSTOMERS and ORDERS table.

SELECT c.id AS customer_id,

o.id AS order_id

FROM customers c,orders o

WHERE c.id = o.c_id

ORDER BY c.id;

The result set is as follows:

This example of an inner join retrieves a cross-product of all rows in
the CUSTOMERS table that have placed orders. Notice that the result set of
this query does not include any row for the customer with an ID of 10,
because that customer has not placed any orders.

The previous example also shows how to declare aliases for tables in
a query's FROM clause, and to use the aliases to qualify column names in
other clauses of the query. For example, alias “c” was used for table
“customers” and “o” for “orders.” The qualification of a column name with its
table name is necessary when the two tables in the join have columns with
the same name.

Many students new to Oracle may attempt to join tables without fully
understanding the joining condition. For the above example, when we use
the joining condition (WHERE c.id = o.c_id), we have to understand that c.id
in “customers” table, and o.c_id in “orders” table are meant to be the same
physical thing (customer id number). If we join tables with incorrect condition,
sometimes, Oracle simply gives you results without any waring if the
information is correct or not. Beware.

NOTE

When a join uses the equality comparison operator in the join
condition, the query is also commonly referred to as an equi join.

For curiosity, you may want to experiment the above query by

deleting the “WHERE c.id = o.c_id” clause. Oracle will generate so-called

CUSTOMER_ID ORDER_ID

----------- ----------

 1 1

 1 14

 2 2

 2 10

 3 3

 4 4

 4 11

 4 13

 5 5

 6 6

 7 7

 7 12

 8 8

 9 9

14 rows selected.

Cartesian product. It combines each row of one table with each row of the
other. A Cartesian product always generates many rows and is rarely useful.
Actually, it is something we want to avoid in coding since it consumes
resources.

Warning: Oracle 11g supports “natural join” function. Please note that “natural
join” only applies when two tables have exactly the same column and column
name. Otherwise, it will produce wrong output without telling you that you did it
wrong. For example, the above “customers” table and “orders” table, both have
a column named “id.” But, the “id” in “customers” table is meant to be customer
id, whereas “id” in “orders” table is meant to be order id. If we use “natural join,”
we will see wrong results. Please test it.

The easiest way to edit your code (including deleting a line) is to
issue the following SQL* Plus command:

SQL> ed

You will then be able to edit your code, save it from your default text
editor (notepad in Windows or vi in UNIX) and exit back to SQL* Plus. After
that, you may execute the newly edited code by the following command:

SQL>/

To see your code in the SQL* Plus buffer, you may use:

SQL> L

EXERCISE 4.16: Building an Outer Join of Two Tables

Similar to an inner join, an outer join also combines the rows of two related
tables based on a common column (or combination of common columns).
However, the result set of an outer join includes rows from one of the tables
even when there are not any matching rows in the other table.

The WHERE clause condition of an outer join is similar to that of an inner,
equi join with one exception—you must place the outer-join operator, a plus
sign delimited by parentheses (+), after one of the columns in the join
condition. Specifically, the outer-join operator follows the column in the join
condition that corresponds to the table for which you expect no matching
rows. For example, enter the following query which performs an outer join of
the CUSTOMERS and ORDERS tables, and includes all customers even
when a customer does not have any matching orders.

SELECT c.id AS customer_id, o.id AS order_id

FROM customers c, orders o

WHERE c.id = o.c_id(+)

ORDER BY c.id;

The result set is as follows:

Notice that the result set includes a row for the record in the
CUSTOMERS table with an ID of 10, even though the customer has not

CUSTOMER_ID ORDER_ID

----------- ----------

 1 1

 1 14

 2 2

 2 10

 3 3

 4 4

 4 11

 4 13

 5 5

 6 6

 7 7

 7 12

 8 8

 9 9

 10

15 rows selected.

placed any orders. Oracle returns nulls for all columns that have no match in
an outer join's result set.

Oracle also refers the above outer join as Left Outer Join since it returns
every row from the left table (CUSTOMERS). In Oracle 10g and 11g, Oracle
offers a new way of doing the left outer join. You may enter the following
code in SQL* Plus:

SELECT c.id AS customer_id, o.id AS order_id

FROM customers c LEFT OUTER JOIN orders o

ON c.id = o.c_id

ORDER BY c.id;

You will have the same results as the previous example. Please note the

use of “LEFT OUTER JOIN” and “ON” in the FROM clause, and the

“WHERE” clause is no longer needed in the new methods.

At this writing, Oracle recommends the use of the new method while
continuing support the previous approach. I personally think it is a matter of
preference. It is your choice.

As a developer, I would highly recommend that you test your join query
very carefully before you put it in your program.

4.3 Inserting, Updating, and Deleting Rows in Tables

All of the previous examples in this chapter show you how to retrieve data
from tables in an Oracle database using various queries (SELECT
commands). Now let's take a look at how to input, modify, and delete table
data using the SQL commands INSERT, UPDATE, and DELETE.

EXERCISE 4.17: Inserting New Rows into a Table

Before you start the exercise, it is a good idea to see what data you have
in “PARTS” table, by using the following statement:

SELECT * FROM parts;

The following SQL* Plus commands may be helpful if you like to see
the displayed data in a more organized way.

SQL> COLUMN DESCRIPTION FORMAT A15;

SQL> COLUMN REORDER FORMAT A8;

To insert a new row into a table, you use the SQL command INSERT.
For example, enter the following statement, which inserts a new part into
the PARTS table.

INSERT INTO

parts(id,description,unitprice,onhand,reorder)

VALUES(6,’Mouse’,49,1200,500);

This example statement demonstrates how to use the most common
clauses and parameters of the INSERT command.

 Use the INTO parameter to specify the target table.

 To insert a single row into the target table, use a VALUES clause
that contains a comma-separated list of values for various
columns in the table.

 Optionally, a comma-separated list of column names specifies the
columns that correspond to the values in the VALUES clause.
The number of columns in the list of column names must match
the values in the VALUES clause. When you omit a column list
altogether, the VALUES clause must specify values for every
column in the target table in the order that the columns appear in
the table.

Now, you can use the above SELECT statement to see the inserted
row in your “PARTS” table.

Personal note: If you copy and paste the above code into Notepad and
run SQL*Plus, you may encounter an error. It is due to the fact that a
single quote (‘) in Microsoft Word does not mean the same in Notepad. If
you retype the code in Notepad, it will not complain.

EXERCISE 4.18: Updating Rows in a Table

To update column values in one or more rows of a table, use the SQL
command UPDATE. For example, enter the following UPDATE statement,
which updates the UNITPRICE value for a part in the PARTS table.

UPDATE parts

SET unitprice = 55,onhand = 1100

WHERE id = 6;

Notice that the SET clause of the example UPDATE statement
updates the UNITPRICE and ONHAND values of a specific record in the
PARTS table—the record identified by the condition of the WHERE
clause, Be careful—when an UPDATE statement omits selection criteria

(in other words, a WHERE clause), the UPDATE statement updates all
rows in the target table.

EXERCISE 4.19: Deleting Rows from a Table

To delete one or more rows from a table, you use the SQL command
DELETE. For example, enter the following DELETE statement, which
deletes a specific record from the PARTS table.

DELETE FROM parts

WHERE id = 6 AND description = ‘Mouse’;

As this example demonstrates, a DELETE statement should always
include a WHERE clause with a condition that targets specific rows in a
table, unless you want to delete all rows in the table.

As a database professional, you do not want to wipe out any data that
you do not intend to delete, especially for a large database. To prevent
this serious mistake, I always do a query first and then change the same
query to delete statement. For example, before I issue the above delete
command, I would do the following:

SELECT * FROM parts

WHERE id = 6 AND description = ‘Mouse’;

 See the following screen shot:

The above may seem to be trivial. But, as a professional, it will pay off if
you treat your data seriously.

4.4 Committing and Rolling Back Transactions (Transaction Control)

As you learned earlier in this chapter, a database transaction is a unit of work
performed by one or more closely related SQL statements. The following
hands-on exercise teaches you how to commit or roll back a transaction.

EXERCISE 4.20: Committing and Rolling Back Transactions

Enter the following series of related SQL statements, which together form a
transaction that inserts a new order into the ORDERS table and two
associated line items into the ITEMS table.

INSERT INTO orders

VALUES(15,3,’23-JUN-16’,’23-JUN-16’,NULL,‘F’);

INSERT INTO items

VALUES (15,1,4,1);

INSERT INTO items

VALUES (15,2,5,1);

To permanently commit the work of the transaction to the database,
use the SQL command COMMIT (with or without the optional keyword
WORK).

COMMIT WORK;

Alternatively, to undo or roll back the work of a transaction's SQL
statements, use the SQL command ROLLBACK (with or without the
optional keyword WORK).

ROLLBACK WORK;

NOTE

After you commit a transaction, Oracle automatically starts the next
transaction. Therefore, you cannot roll back a transaction after you
commit it.

A fundamental principle that you must clearly understand is that a
transaction is a unit of work. That is, although a transaction might be made
up of several SQL statements, they all commit or roll back as a single
operation. For example, when an application commits a transaction,
Oracle permanently records the changes made by all SQL statements in
the transaction. If for some reason Oracle cannot commit the work of any

statement in a transaction Oracle automatically rolls back the effects of all
statements in the transaction.

When you start a database application and establish a connection to a
database, Oracle implicitly starts a new transaction for your session. After
you commit or roll back a transaction, Oracle again implicitly starts a new
transaction for your session.

4.5 Transaction Design

The design of application transactions is very important, because a
transaction's design can directly affect database integrity and the
performance of applications. The following sections discuss several issues
to consider when designing a database application's transactions.

4.5.1 Units of Work

Remember that a transaction is meant to encompass many closely related
SQL statements that, together, perform a single unit of work. More
specifically, a transaction should not encompass multiple units of work,
nor should it encompass a partial unit of work. The following example
demonstrates bad transaction design.

INSERT INTO Customers ... ;

INSERT INTO parts ... ,

INSERT INTO orders ... ;

INSERT INTO items ... ;

INSERT INTO items ... ;

COMMIT WORK ;

In this example, the bad transaction design encompasses three
separate units of work.

1. The transaction inserts a new customer record.

2. The transaction inserts a new part record.

3. The transaction inserts the records for a new sales order.

Technically, each unit of work in the transaction has nothing to do with
the others. When a transaction encompasses more than a single unit of
work, Oracle must maintain internal system information on behalf of the
transaction for a longer period of time. Quite possibly, this can detract
from system performance, especially when many transactions burden
Oracle with the same type of bad transaction design.

To contrast the previous type of bad transaction design, consider
another example:

INSERT INTO orders ...;

COMMIT WORK ;

INSERT INTO items ... ;

COMMIT WORK ;

INSERT INTO items ... ;

COMMIT WORK ;

This example does the opposite of the previous example—there are
three transactions to input the records for a single sales order. The overhead
of many unnecessary small transaction commits can also detract from server
performance. More important, partial transactions can risk the integrity of a
database's data. For example, consider what would happen if you use the
above transaction design to insert a new sales order, but before you can
commit the insert of all line items for the new sales order, your session
abnormally disconnects from the database server. At this point, the database
contains a partial sales order, at least until you reconnect to finish the sales
order. In the interim, a shipping transaction might look at the partial sales
order and not realize that it is working with incomplete information. As a
result, the shipping department might unknowingly send a partial product
shipment to a customer and mark it as complete. The irate customer calls
days later demanding to know why she didn't receive the other ordered
products. When the shipping clerk looks at the order in the database, he sees
the missing line items, but he cannot explain why the order did not contain the
products and was marked as complete.

4.5.2 Read-Write Transactions

By default, when Oracle starts a new transaction for your session, the
transaction is read-write. A read-write transaction can include any type of

SQL statement, including DML statements that query, insert, update, and
delete table rows. To explicitly declare a transaction as a read-write
transaction, you can begin the transaction with a SQL command SET
TRANSACTION and the READ WRITE option.

SET TRANSACTION READ WRITE;

4.5.3 Read-Only Transactions

A read-only transaction includes queries only. In other words, a read-only
transaction does not modify the database in any way. Certain reporting
applications might want to explicitly declare a transaction as read-only with
the READ ONLY option of the SET TRANSACTION command.

SET TRANSACTION READ ONLY;

When you declare an explicit read-only transaction, Oracle guarantees
transaction-level read consistency for the transaction. This means that the
result sets of all queries in the transaction reflect the database's data as it
existed at the beginning of the transaction, even though other transactions
modify and commit work to the database. Reporting applications commonly
use an explicit read-only transaction to encompass several queries and
produce a report with consistent data.

Class/Chapter Summary

This class/chapter has provided you with a broad overview of SQL and a tutorial
for using the most common SQL commands.

 To accomplish work with Oracle, applications must use
SQL commands.

 Use the SQL command SELECT to build queries that retrieve
data from database tables. A query's FROM clause specifies the
table(s) to target. A query's SELECT clause determines what
columns to include in the query's result set—the SELECT clause
can contain simple column names as well as expressions that use
operators, literals, or SQL functions to derive data. A query's
optional WHERE clause condition determines which rows to
include in the query's result set. You can use the optional ORDER
BY clause to sort the records in a query's result set. Use the
optional GROUP BY clause to summarize or aggregate data in a
query's result set.

 Use the SQL command INSERT to insert a row into a table. An
INSERT statement's INTO parameter specifies the target table,
and the VALUES clause contains a list of values for the various
columns in the table. You can also include an optional list of
column names before the VALUES clause to specify target
columns in the table for the values in the VALUES clause.

 Use the SQL command UPDATE to update rows in a table. Use
the SET clause to identify the column values to change, and a
WHERE clause to target specific rows in the table that you want
to update.

 Use the SQL command DELETE to delete rows from a table. A
DELETE statement should always include a WHERE clause with
a condition that targets specific rows in a table, unless you want
to delete all rows in the table.

 Use the SQL commands COMMIT and ROLLBACK to control the
outcome of your session's current transaction. A COMMIT
statement permanently commits the changes made by all SQL
statements in the transaction. A ROLLBACK statement undoes
the effects of all SQL statements in the transaction. Oracle
automatically starts a new transaction after you commit or roll
back your current transaction.

