
Class Note: Chapter 7

Building a Basic Relational Schema

(Updated May 17, 2016)

[The “class note” is the typical material I would prepare for my face-to-face class. Since

this is an Internet based class, I am sharing the notes with everyone assuming you are in

the class.]

Every database application is built upon a set of related database objects that store the

application's data and allow the application to function. This chapter introduces Oracle

database objects, such as tables, and discusses the logical concepts of database objects.

Discussions of data storage (storage parameters, partitioning, and so on) will come in

subsequent chapters of this course. This chapter's topics include:

 Schemas

 Tables

 Integrity constraints

 Views

 Sequences

 Synonyms

 Indexes

Chapter Prerequisites

To practice the hands on exercises in this chapter, you need to start SQL*Plus and

run the following command script at SQL> prompt:

location\\Sql\chap07.sql

Where location is the file directory where you expanded the supplemental files

downloaded from course web site. For example, after starting SQL*Plus and connecting

as SCOTT, you can run this chapter's SQL command script using the SQL*Plus

command @, as in the following example (assuming that your chap07.sql file is in

C:\temp\\Sql).

SQL> @C:\temp\\Sql\chap07.sql;

Once the script completes successfully, leave the current SQL*Plus session open

and use it to perform this chapter's exercises in the order that they appear.

7.1. Schemas

It is easier to solve most problems in life when you are organized and have a well

designed plan to achieve your goal. If you are unorganized, you will most certainly

realize your goals less efficiently, if at all. Designing an information management system

that uses Oracle is no different.

Databases organize related objects within a database schema. For example, it is

typical to organize within a single database schema all of the tables and other database

objects necessary to support an application. This way, it is clear that the purpose of a

certain table or other database object is to support the corresponding application system.

Figure 7-1 illustrates the idea of an application schema.

7.1.1. Schemas, an Entirely Logical Concept

It's important to understand that schemas do not physically organize the storage of

objects. Rather, schemas logically organize related database objects. In other words, the

logical organization of database objects within schemas is purely for the benefit of

organization and has absolutely nothing to do with the physical storage of database

objects.

The logical organization that schemas offer can have practical benefits. For

example, consider an Oracle database with two schemas, S1 and S2. Each schema can

have a table called T1. Even though the two tables share the same name, they are

uniquely identifiable because they are within different database schemas. Using standard

dot notation, the complete names for the different tables would be S1.T1 and S2.T1.

FIGURE 7-1 . A schema is a logical organization of related database objects

If the idea of logical versus physical organization is confusing to you, consider

how operating systems organize files on disk. The layout of folders and files in a

graphical file management utility, such as the Microsoft Windows Explorer, does not

necessarily correspond to the physical location of the folders and files on a particular disk

drive. File folders represent the logical organization of operating system files. The

underlying operating system decides where to physically store the blocks for each

operating system file, independent of the logical organization of encompassing folders.

Subsequent chapters of this book explain more about how Oracle can physically

organize the storage of database objects using physical storage structures.

7.1.2. The Correlation of Schemas and Database User Accounts

With Oracle, the concept of a database schema is directly tied to the concept of a

database user. That is, a schema in an Oracle database has a “one to one” correspondence

with a user account such that a user and the associated schema have the same name. As a

result, people who work with Oracle often blur the distinction between users and

schemas, commonly saying things like "the user SCOTT owns the EMP and DEPT

tables" rather than "the schema SCOTT contains the EMP and DEPT tables." Although

these two sentences are more or less equivalent, understand that there might be a clear

distinction between users and schemas with relational database implementations other

than Oracle. Therefore, while the separation between users and schemas might seem

trivial for Oracle, the distinction can be very important if you plan to work with other

database systems.

NOTE
The scripts that you executed to support the practice exercises of this chapter and

previous chapters create new database users/schemas (practice03, practice04,

and so on) that contain similar sets of tables and other database objects (PARTS,

CUSTOMERS, and so on).

7.2. Database Tables

Tables are the basic data structure in any relational database. A table is nothing

more than an organized collection of records, or rows, that all have the same attributes,

or columns. Figure 7-2 illustrates a typical CUSTOMERS table in a

relational database.

FIGURE 7-2. A table is a set of records with the same attributes

Each customer record in the example CUSTOMERS table has the same attributes,

including an ID, a company name, a last name, a first name, and so on. When you create

tables, the two primary things that you must consider are the following:

 The table's columns, which describe the table's structure

 The table's integrity constraints, which describe the data that is acceptable within

the table

The following sections explain more about columns and integrity constraints.

7.2.1. Columns and Datatypes

When you create a table for an Oracle database, you establish the structure of the

table by identifying the columns that describe the table's attributes. Furthermore, every

column in a table has a datatype, which describes the basic type of data that is acceptable

in the column, much like when you declare the datatype of a variable in a PL/SQL or

Java program. For example, the ID column in the CUSTOMERS table uses the basic

Oracle datatype NUMBER because the column stores ID numbers. Oracle supports many

fundamental datatypes that you can use when creating a relational database table and its

columns. Table 7-1 and the following sections describe the most commonly used Oracle

datatypes.

Datatype Description

CHAR(size)

Stores fixed length character strings up to 2,000 bytes

VARCHAR2(size)

Stores variable length character strings up to 4,000 bytes

NUMBER(precision, scale)

Stores any type of number

DATE

Stores dates and times

CLOB

Stores single byte character large objects (CLOBs)

up to 40 gigabytes

TABLE 7-1. The Most Commonly Used Oracle Datatypes

7.2.1.1. CHAR and VARCHAR2: Oracle's Character Datatypes

Oracle's CHAR and VARCHAR2 are the datatypes most commonly used for

columns that store character strings. The Oracle datatype CHAR is appropriate for

columns that store fixed length character strings, such as two letter USA state codes.

Alternatively, the Oracle datatype VARCHAR2 is useful for columns that store variable-

length character strings, such as names and addresses. The primary difference between

these character datatypes relates to how Oracle stores strings shorter than the maximum

length of a column.

 When a string in a CHAR column is less than the column's size, Oracle

pads (appends) the end of the string with blank spaces to create a string

that matches the column's size.

 When a string in a VARCHAR2 column is less than the column's

maximum size, Oracle stores only the string and does not pad the string

with blanks.

Thus, when the strings in a column vary in length, Oracle can store them more

efficiently in a VARCHAR2 column than in a CHAR column. Oracle also uses different

techniques for comparing CHAR and VARCHAR2 strings to one another so that

comparison expressions evaluate as expected.

7.2.1.2. NUMBER: Oracle's Numeric Datatype

To declare columns that accept numbers, you can use Oracle's NUMBER

datatype. Rather than having several numeric datatypes, Oracle's NUMBER datatype

supports the storage of all types of numbers, including integers, floating point numbers,

real numbers, and so on. You can limit the domain of acceptable numbers in a column by

specifying a precision and a scale for a NUMBER column.

7.2.1.3. DATE: Oracle's Time Related Datatype

When you declare a table column with the DATE datatype, the column can store

all types of time related information, including dates and associated times.

7.2.1.4. CLOBs, BLOBs, and More: Oracle's Multimedia Datatypes

Because databases are secure, fast, and safe storage areas for data, they are often

employed as data repositories for multimedia applications. To support such content rich

applications, Oracle supports several different large object (LOB) datatypes that can store

unstructured information, such as text documents, static images, video, audio, and more.

 A CLOB column stores character objects, such as documents.

 A BLOB column stores large binary objects, such as graphics, video

clips, or sound files.

 A BFILE column stores file pointers to LOBS managed by file

systems external to the database. For example, a BFILE column might

be a list of filename references for photos stored on a CD ROM.

The following section explains several other important LOB characteristics,

comparing LOBS with some older Oracle large object datatypes.

7.2.1.5. Contrasting LOBs with Older Oracle Large Object Datatypes

For backward compatibility, Oracle continues to support older Oracle datatypes

designed for large objects, such as LONG and LONG RAW. However, Oracle's newer

LOB datatypes have several advantages over the older Oracle large datatypes.

 A table can have multiple CLOB, BLOB, and BFILE columns. In contrast,

a table can have only one LONG or LONG RAW column.

 A table stores only small locators (pointers) for the LOBs in a column,

rather than the actual large objects themselves. In contrast, a table stores

data for a LONG column within the table itself.

 A LOB column can have storage characteristics independent from those of

the encompassing table, making it easier to address the large disk

requirements typically associated with LOBS. For example, it's possible to

separate the storage of primary table data and related LOBS in different

physical locations (for example, disk drives). In contrast, a table

physically stores the data for a LONG column in the same storage area

that contains all other table data.

 Applications can efficiently access and manipulate pieces of a LOB. In

contrast, applications must access an entire LONG field as an atomic

(indivisible) piece of data.

Before migrating or designing new multimedia applications for Oracle, consider

the advantages of Oracle's newer LOB datatypes versus older large object datatypes.

7.2.1.6. Oracle's National Language Support Character Datatypes

Oracle's National Language Support (NLS) features allow databases to store and

manipulate character data in many languages. Some languages have character sets

that require several bytes for each character. The special Oracle datatypes NCHAR,

NVARCHAR2, and NCLOB are datatypes that are counterparts to the CHAR,

VARCHAR2, and CLOB datatypes, respectively.

7.2.1.7. ANSI Datatypes and Others

Oracle also supports the specification of Oracle datatypes using other standard

datatypes. For example, Table 7-2 lists the ANSI/ISO (American National Standards

Institute/International Organization for Standardization) standard datatypes that

Oracle supports.

7.2.1.8. Default Column Values

When you declare a column for a table, you can also declare a corresponding

default column value. Oracle uses the default value of a column when an application

inserts a new row into the table but omits a value for the column. For example, you

might indicate that the default value for the ORDERDATE column of the ORDERS

table be the current system time when an application creates a new order.

NOTE
Unless you indicate otherwise, the initial default value for a column is null (an

absence of value).

This ANSI/ISO datatype converts to this Oracle datatype

CHARACTER

CHAR

CHAR

CHARACTER VARYING

CHAR VARYING

VARCHAR2

NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

NCHAR

NATIONAL CHARACTER VARYING

NATIONAL CHAR VARYING

NCHAR VARYING

NVARCHAR2

NUMERIC

DECIMAL

INTEGER

INT

SMALLINT

FLOAT

DOUBLE PRECISION

REAL

NUMBER

TABLE 7-2. Oracle Supports the Specification of Oracle Datatypes Using

ANSI/ISO Standard Datatypes

7.3. Creating and Managing Tables

Now that you understand that the structure of a table is defined by its columns and

that each column in a table has a datatype, it's time to learn the basics of creating and

managing the structure of tables in an Oracle database. The following practice exercises

introduce the SQL commands CREATE TABLE and ALTER TABLE.

EXERCISE 7.1: Creating a Table

You create a table using the SQL command CREATE TABLE. For the purposes

of this simple exercise, the basic syntax for creating a relational database table with the

CREATE TABLE command is as follows:

CREATE TABLE [schema.] table

 (column datatype [DEFAULT expression]
 [, column datatype [DEFAULT expression]]
 [... other columns ...]

)

Using your current SQL*Plus session, enter the following command to create the

familiar PARTS table in this lesson's practice schema.

CREATE TABLE parts(
 id INTEGER,
 description VARCHAR2(250),

 unitprice NUMBER(10, 2),
 onhand INTEGER,

 reorder INTEGER
);

Your current schema (practice07) now has a new table, PARTS, that you can

query, insert records into, and so on. Notice that the PARTS table has five columns.

 The statement declares the ID, ONHAND, and REORDER columns with the

ANSI/ISO datatype INTEGER, which Oracle automatically converts to the

Oracle datatype NUMBER with 38 digits of precision.

 The statement declares the DESCRIPTION column with the Oracle datatype

VARCHAR2 to accept variable length strings up to 250 bytes in length.

 The statement declares the UNITPRICE column with the Oracle datatype

NUMBER to hold numbers up to ten digits of precision and to round numbers

after two digits to the right of the decimal place.

Before continuing, create the familiar CUSTOMERS table using the following

CREATE TABLE statement:

CREATE TABLE customers (
 id INTEGER,
 lastname VARCHAR2(100),

 firstname VARCHAR2(50),
 companyname VARCHAR2(100),

 street VARCHAR2(100),
 city VARCHAR2(100),
 state VARCHAR2(50),

 zipcode NUMBER(10),
 phone VARCHAR2(30),

 fax VARCHAR2(30),
 email VARCHAR2(100)
);

When you are designing the tables in a database schema, sometimes it can be

tricky to choose the correct datatype for a column. For example, consider the ZIPCODE

column in the CUSTOMERS table of the previous example, declared with the NUMBER

datatype. Consider what will happen when you insert a customer record with the

ZIPCODE "01003" Oracle is going to store this number as "1003", certainly not what you

intended. Furthermore, consider what would happen if you insert a customer record with

a zip code and an extension such as "91222 0299"Oracle is going to evaluate this numeric

expression and store the resulting number "90923". These two simple examples illustrate

that the selection of a column's datatype is certainly an important consideration, and is

not to be taken lightly. In the next practice exercise, you'll learn how to change the

datatype of the ZIPCODE column to store postal codes correctly. To complete this

exercise, create the SALESREPS table with the following CREATE TABLE statement.

CREATE TABLE salesreps (
 id INTEGER,
 lastname VARCHAR2(100),

 firstname VARCHAR2(50),
 commission NUMBER(38)

);

NOTE
The examples in this section introduce the basics of the CREATE TABLE

command. Subsequent exercises in this and other chapters demonstrate

more advanced clauses and parameters of the CREATE TABLE command.

EXERCISE 7.2: Altering and Adding Columns in a Table

After you create a table, you can alter its structure using the SQL command

ALTER TABLE. For example, you might want to change the datatype of a column,

change a column's default column value, or add an entirely new column altogether. For

the purposes of this simple exercise, the basic syntax of the ALTER TABLE command

for adding or modifying a column in a relational database table is as follows:

ALTER TABLE [schema.]table
[ADD column datatype [DEFAULT expression]]
[MODIFY column [datatype] [DEFAULT expression]]

For example, enter the following ALTER TABLE statement, which modifies the

datatype of the ZIPCODE column in the CUSTOMERS table that you created in

Exercise 7.1.

ALTER TABLE customers
MODIFY zipcode VARCHAR2(50);

NOTE
You can change the datatype of a column, the precision or scale of a

NUMBER column, or the size of a CHAR or VARCHAR2 column only

when the table does not contain any rows, or when the target column is

null for every record in the table.

Suppose that you realize the CUSTOMERS table must be able to track each

customer's sales representative. Enter the following ALTER TABLE statement, which

adds the column S_ID to record the ID of a customer's sales representative.

ALTER TABLE customers

ADD s_id INTEGER;

NOTE
The examples in this section introduce the basics of the ALTER TABLE

command. Subsequent exercises in this chapter and others demonstrate

more advanced clauses and parameters of the ALTER TABLE command.

7.4. Data Integrity and Integrity Constraints

Data integrity is a fundamental principle of the relational database model. Saying

that a database has integrity is another way of saying that the database contains only

accurate and acceptable information. For obvious reasons, data integrity is a desirable

attribute for a database.

To a small degree, a column's datatype establishes a more limited domain of

acceptable values for the column it limits the type of data that the column can store. For

example, a DATE column can contain valid dates and times, but not numbers or character

strings. But while simple column datatypes are useful for enforcing a basic level of data

integrity, there are typically more complex integrity rules that must be enforced in a

relational database. In fact, the relational database model, itself, outlines several inherent

data integrity rules that a relational database management system (RDBMS) must uphold.

The next few sections describe these common integrity rules and related issues.

7.4.1. Domain Integrity, Nulls, and Complex Domains

Domain integrity defines the domain of acceptable values for a column. For

example, you might have a rule that a customer record is not valid unless the customer's

state abbreviation code is one of the fifty or so USA state codes.

Besides using column datatypes, Oracle supports two types of integrity

constraints that allow you to further limit the domain of a column:

 A column can have a not null constraint to eliminate the possibility of

nulls (absent values) in the column.

 You can use a check constraint to declare a complex domain integrity rule

as part of a table. A check constraint commonly contains an explicit list of

the acceptable values for a column. For example, "M" and "F" in a column

that contains gender information; "AL", "AK", ... "WY" in a column that

contains USA state codes; and so on.

7.4.2. Entity Integrity, Primary Keys, and Alternate Keys

Entity integrity ensures that every row in a table is unique. As a result, entity

integrity eliminates the possibility of duplicate records in the table and makes every row

in the table uniquely identifiable.

The primary key of a table ensures its entity integrity. A primary key is a column

that uniquely identifies each row in a table. Typically, tables in a relational database use

ID type columns as primary keys. For example, a customer table might include an ID

column to uniquely identify the customer records within. This way, even if two

customers, say John Smith and his son John Smith (Jr.), have the same name, address,

phone number, and so on, they have distinct ID numbers that make them different.

A table's primary key is sometimes a composite key; that is, it is composed of

more than one column. For example, the primary key in a typical line item table of an

order entry system might have a composite primary key that consists of the ORDER ID

and ITEM ID columns. In this example of a composite primary key, many line item

records can have the same line item ID (1, 2, 3, ...), but no two line item records can have

the same order ID and line item ID combination (order ID 1, line item IDs 1,2,3, ...; order

ID 2, line item IDs 1,2,3, ...; and so on).

Optionally, a table might require secondary levels of entity integrity. Alternate

keys are columns or sets of columns that do not contain duplicate values within them. For

example, the EMAIL column in an employee table might be made an alternate key to

guarantee that all employees have unique e-mail addresses.

7.4.3. Referential Integrity, Foreign Keys, and Referential Actions

Referential integrity, sometimes called relation integrity, establishes the

relationships among different columns and tables in a database. Referential integrity

ensures that each column value in a foreign key of a child (or detail) table matches a

value in the primary or an alternate key of a related parent (or master) table. For example,

a row in the CUSTOMERS (child) table is not valid unless the customer's S_ ID field

refers to a valid sales representative ID in the SALESREPS (parent) table. When the

parent and child table are the same, this is called self-referential integrity. Figure 7-3

illustrates the terminology and concepts related to referential integrity.

FIGURE 7-3. Referential integrity describes the relationships among columns and tables

in a relational database

REFERENTIAL ACTIONS: Referential integrity ensures that each value in a

foreign key always has a matching parent key value. To guarantee referential integrity, an

RDBMS must also be able to address database operations that manipulate parent keys.

For example, when a user deletes a sales order, what happens to the dependent line items

for that order? Referential actions describe what will be done in cases where an

application updates or deletes a parent key that has dependent child records.

The relational database model describes several referential actions:

 Update/Delete Restrict The RDBMS does not allow an application to

update a parent key or delete a parent row that has one or more dependent

child records. For example, you cannot delete a sales order from the

ORDERS table if it has associated line items in the ITEMS table.

 Delete Cascade When an application deletes a row from the parent

table, the RDBMS cascades the delete by deleting all dependent records in a

child table. For example, when you delete an order from the ORDERS table,

the RDBMS automatically removes all corresponding line items from the

ITEMS table.

 Update Cascade When an application updates a parent key, the RDBMS

cascades the update to the dependent foreign keys. For example, when you

change an order's ID in the ORDERS table, the RDBMS would

automatically update the order ID of all corresponding line item records in

the ITEMS table. This referential action is rarely useful, because

applications typically do not allow users to update key values.

 Update/Delete Set Null When an application updates or deletes a

parent key, all dependent keys are set to null.

 Update/Delete Set Default When an application updates or deletes a

parent key, all dependent keys are set to a meaningful default value.

By default, Oracle enforces the Update/Delete Restrict referential actions for all

referential integrity constraints. Optionally, Oracle can perform the Delete Cascade or

Delete Set Null referential action for a referential integrity constraint.

7.4.4. When Does Oracle Enforce Integrity Constraint Rules?

Oracle can enforce an integrity constraint at two different times:

 By default, Oracle enforces all integrity constraints immediately after an

application submits a SQL statement to insert, update, or delete rows in a

table. When a statement causes a data integrity violation, Oracle

automatically rolls back the effects of the statement.

 Optionally, Oracle can delay the enforcement of a deferrable integrity

constraint until just before the commit of a transaction. When you commit a

transaction and the transaction has modified table data such that it does not

conform to all integrity constraints, Oracle automatically rolls back the

entire transaction (that is, the effects of all statements in the transaction).

Typical database applications should choose to immediately check data integrity

as each SQL statement is executed. However, certain applications, such as large data

loads, might need to update many tables and temporarily violate integrity rules until just

before the end of the transaction.

7.4.5. Creating and Managing Integrity Constraints

You can create integrity constraints for a table when you create the table, or

subsequently by altering the table. The next few practice exercises teach you how to use

the SQL commands CREATE TABLE and ALTER TABLE to create not null, check,

primary key, unique, and referential integrity constraints.

EXERCISE 7.3: Creating a Table with Integrity Constraints

One way to declare integrity constraints for a table is to do so when you create the

table. To create a table with integrity constraints, use the CONSTRAINT clause of the

CREATE TABLE command. The following syntax listing is a partial listing of the

options available with the CONSTRAINT clause of the CREATE TABLE command.

CREATE TABLE [schema.]table (
{ column datatype [DEFAULT expression]
 [CONSTRAINT constraint]

 { [NOT] NULL
 / (UNIQUE|PRIMARY KEY)

 / REFERENCES [schema.]table [(column)] [ON DELETE CASCADE]
 / CHECK (condition) }}
 / another constraint specification }}

/ [CONSTRAINT constraint]
 { {UNIQUE|PRIMARY KEY) (column [, column] ...)

 / FOREIGN KEY (column [, column] ...)
REFERENCES [schema.]table [(column [, column] ...)]
 [ON DELETE {CASCADEISET NULL}]

 / CHECK (condition)]
[,... other columns/constraints or constraints]

Notice that you can declare an integrity constraint along with a column, or you

can declare an integrity constraint separate from a specific column declaration. In

general, you can always choose either option to create a constraint, except in the

following situations:

 To declare a column with a not null constraint, you must do so as part of

the column declaration.

 To declare a composite primary key, unique, or referential integrity

constraint, you must declare the constraint separate from a specific column

declaration.

Enter the following CREATE TABLE statement to create the familiar ORDERS

table with some integrity constraints.

CREATE TABLE orders (
 id INTEGER
 CONSTRAINT orders_pk PRIMARY KEY,

 orderdate DATE DEFAULT SYSDATE
 NOT NULL,

 shipdate DATE,
 paiddate DATE,
 status CHAR(1) DEFAULT 'F'
 CONSTRAINT status_ck
 CHECK (status IN ('F','B'))

);

This statement creates the ORDERS table and declares three integrity constraints

as part of column declarations (see the bold CONSTRAINT clauses above).

 The ID column is the ORDERS table's primary key--every record must

have an ID (a null is implicitly disallowed) that is unique from all others.

The statement names the primary key constraint ORDERS_PK.

 The statement declares the ORDERDATE column as not null. Because the

statement does not explicitly name the not null constraint, Oracle

generates a unique name for the constraint. Later in this chapter, you'll

learn how to reveal information about schema objects and integrity

constraints, including generated constraint names.

 The STATUS_CK check constraint ensures that the STATUS field value

is F or B for every record in the ORDERS table. Because the statement

does not declare the STATUS column with a not null constraint, the

STATUS column can also contain nulls.

The next section provides more examples of integrity constraint declarations with

the ALTER TABLE command, including how to declare unique and referential integrity

constraints.

EXERCISE 7.4: Adding a Not Null Constraint to an Existing Column

After you create a table, you might need to add (or remove) a not null integrity

constraint to (or from) an existing column you can do so by using the following syntax of

the ALTER TABLE command:

ALTER TABLE [schema.] table
MODIFY column [NOT] NULL

For example, enter the following command to add a not null integrity constraint to

the DESCRIPTION column of the PARTS table:

ALTER TABLE parts

MODIFY description NOT NULL;

NOTE
To subsequently remove the not null constraint from the STATUS column,

you would use the previous statement but omit the NOT keyword.

EXERCISE 7.5: Adding Primary Key and Unique Constraints to a Table

You can also declare an integrity constraint after you create a table using the

ALTER TABLE command, as follows:

ALTER TABLE [schema.] table
ADD [CONSTRAINT constraint]
 {{UNIQUE|PRIMARY KEY} (column [, column] ...)

 / FOREIGN KEY (column [, column] ...)
 REFERENCES [schema.]table [(column [, column] ...)]

 [ON DELETE {CASCADE|SET NULL}]
/CHECK (condition) }

For example, the PARTS and CUSTOMERS tables that you created in Exercise

7.1 do not have primary keys--enter the following commands to add primary key

constraints for these tables.

ALTER TABLE parts
ADD CONSTRAINT parts_pk PRIMARY KEY (id);

ALTER TABLE customers

ADD CONSTRAINT customers_pk PRIMARY KEY (id);

Enter the following command to add a composite unique constraint to the

CUSTOMERS table that prevents duplicate LASTNAME/FIRSTNAME combinations.

Because the statement does not explicitly name the unique constraint, Oracle generates a

unique system identifier for the new constraint.

ALTER TABLE customers

ADD UNIQUE (lastname, firstname);

EXERCISE 7.6: Adding Referential Constraints to a Table

You can also use the syntax of the ALTER TABLE command in the previous

exercise to add a referential integrity constraint to a table. For example, enter the

following statement to add a referential integrity constraint to the CUSTOMERS table

that ensures each customer record's SID refers to an ID in the SALESREPS table.

ALTER TABLE customers
 ADD CONSTRAINT salesreps_fk

 FOREIGN KEY (s_id) REFERENCES salesreps (id);

The previous statement should return the following error number and message:

ORA 02270: no matching unique or primary key for this column-list

Why? Remember that when you declare a referential integrity constraint for a

table, the foreign key must refer to a primary key or unique key in a table. Because the

SALESREPS table does not have a primary key, the preceding statement returns an error.

To remedy this situation, first add the primary key to the SALESREPS table, and

then reissue the previous statement to add the referential integrity constraint to the

CUSTOMERS table.

ALTER TABLE salesreps
 ADD CONSTRAINT salesreps_pk PRIMARY KEY (id);

ALTER TABLE customers

 ADD CONSTRAINT salesreps_fk
 FOREIGN KEY (s_id) REFERENCES salesreps (id);

Notice that the specification of the SALESREPS_FK referential integrity

constraint does not specify a referential action for deletes. By this omission, the

referential integrity constraint enforces the delete restrict referential action. A subsequent

exercise in this chapter demonstrates how to declare a referential integrity constraint with

the delete cascade referential action.

EXERCISE 7.7: Adding a Column with Constraints

When you add a column to a table, you can also add a constraint to the table at the

same time, using the following syntax of the ALTER TABLE command:

ALTER TABLE [schema.]table
 ADD (

 column [datatype] [DEFAULT expression]
 [[CONSTRAINT constraint]

 { NOT NULL
 / {UNIQUEIPRIMARY KEY}
 / REFERENCES table [(column)]

 [ON DELETE {CASCADE|SET NULL}]
 / CHECK (condition) }]

 [another constraint specification]
 [,other columns and their constraints...]
)

For example, each record in the ORDERS table needs a field to keep track of the

ID of the customer that places the order. To add this column, enter the following

statement, which adds the C_ID column to the ORDERS table, along with a not null and

referential integrity constraint.

ALTER TABLE orders
 ADD c_id INTEGER

 CONSTRAINT c_id_nn NOT NULL
 CONSTRAINT customers_fk

REFERENCES customers (id);

The combination of the not null and referential integrity constraints in this

exercise ensure that each record in the ORDERS table must have a C_ID (customer ID)

that refers to an ID in the CUSTOMERS table.

EXERCISE 7.8: Declaring a Referential Constraint with a Delete Action

We need one more table to complete the table specifications in our very simple

practice schema enter the following CREATE TABLE statement, which builds the

ITEMS table, along with several integrity constraints (highlighted in bold).

CREATE TABLE items (
 o_id INTEGER
 CONSTRAINT orders_fk
 REFERENCES orders ON DELETE CASCADE,

 id INTEGER,

 p_id INTEGER
 CONSTRAINT parts_fk

 REFERENCES parts,

quantity INTEGER DEFAULT 1
CONSTRAINT quantity_nn NOT NULL,
CONSTRAINT items_pk
PRIMARY KEY (o_id, id)

);

The following list describes the integrity constraints declared for the ITEMS

table.

 The ORDERS_FK referential integrity constraint ensures that the O_ID

field of each record in the ITEMS table refers to an ID in the ORDERS

table. This referential integrity constraint also specifies the delete cascade

referential action whenever a transaction deletes a record in the ORDERS

table, Oracle will automatically cascade the delete by deleting the

associated records in the ITEMS table.

 The QUANTITY_NN not null constraint prevents nulls from being

entered in the QUANTITY column.

 The PARTS_FK referential integrity constraint ensures that the P_ID field

of each record in the ITEMS table refers to an ID in the PARTS table.

 The ITEMS_PK primary key constraint is a composite primary key. This

constraint ensures that neither the O_ID nor ID columns contain nulls, and

that each record's O_ID/ID combination is unique from all others in the

ITEMS table.

EXERCISE 7.9: Testing an Integrity Constraint

At this point, we've got all of our tables built. The statements in this exercise have

you insert some rows into various tables to confirm that the integrity constraints we

created in the previous exercises actually enforce our business rules.

First, observe what happens when you enter the following statements, which

insert three new sales representatives into the SALESREPS table.

INSERT INTO salesreps
(id, lastname, firstname, commission)

VALUES (1,'Pratt','Nick',5);

INSERT INTO salesreps
(id, lastname, firstname, commission)
VALUES (2, 'Jonah','Suzanne',5);

INSERT INTO salesreps

(id, lastname, firstname, commission)
VALUES (2,'Greenberg','Bara',5);

The first and second INSERT statements should execute without error. However,

when you attempt the third INSERT statement, Oracle will return the following error

number and message:

ORA 00001: unique constraint (PRACTICE07.SALESREPS PK) violated

The primary key constraint of the SALESREPS table prohibits two records from

having the same ID. In this example, the third INSERT statement attempts to insert a new

record with an ID number of 2, which is already in use by another record. If you rewrite

the third INSERT statement with a different ID, the row will insert without error.

INSERT INTO salesreps

(id, lastname, firstname, commission)
VALUES (3,'Greenberg','Bara',5);

You can permanently commit your current transaction by issuing a COMMIT

statement.

COMMIT;

Now, let's test a referential integrity constraint and see what happens. Enter the

following statements, which insert some records into the CUSTOMERS table.

INSERT INTO customers
(id, lastname, firstname, companyname, street,
city, state, zipcode, phone, fax, email, s_id)

VALUES (1,'Joy','Harold','McDonald Co.',
'4458 Stafford St.','Baltimore','MD','21209',

'410 983 5789',NULL,'harold_joy@mcdonald.com',3);

INSERT INTO customers
(id, lastname, firstname, companyname,
street, city, state, zipcode, phone, fax, email, s_id)

VALUES (2,'Musial','Bill','Car Audio Center',
'12 Donna Lane','Reno','NV','89501','775 859 2121',

'775 859 2121','musial@car audio.net',5);

The first INSERT statement should execute without error, provided that you

successfully executed the previous INSERT statement in this exercise (inserting the

record for the sales representative with an ID of 3). However, when you attempt to

execute the second INSERT statement, Oracle will return the following error number and

message.

 ORA 02291: integrity constraint (PRACTICE07.SALESREPS_FK)

violated

 - parent key not found

The SALESREPS_FK referential integrity constraint in the CUSTOMERS table

does not permit a customer record with an S_ID that fails to match an ID in the

SALESREPS table. In this case, the INSERT statement attempts to insert a record that

refers to a sales representative with an ID of 5, which does not exist. The following

rewrite of the second INSERT statement should succeed without error:

INSERT INTO customers

(id, lastname, firstname, companyname, street,

city, state, zipcode, phone, fax, email, s_id)

VALUES (2,'Musial','Bil1','Car Audio Center',

'12 Donna Lane','Reno','NV','89501','775-859-2121',

'775-859-2121','musial@car-audio.net',l);

COMMIT;

EXERCISE 7.10: Declaring and Using a Deferrable Constraint

All of the constraints that you specified in Exercises 7.3 through 7.8 are

immediately enforced as each SQL statement is executed. The previous exercise

demonstrates this immediate constraint enforcement when you attempt to insert a row

that does not have a unique primary key value into the PARTS table, Oracle immediately

enforces the constraint by rolling back the INSERT statement and returning an error.

You can also create a deferrable constraint, if your application logic requires. If

you do so, upon beginning a new transaction, you can instruct Oracle to defer the

enforcement of selected or all deferrable constraints until you commit the transaction. To

create a deferrable constraint, include the optional keyword DEFERRABLE when you

specify the constraint.

To demonstrate deferrable constraints, let's make the STATUS _CK check

constraint of the ORDERS table a deferrable constraint. This would permit a sales

representative to defer the decision as to whether a new order should be backordered

because of a lack of inventory for a particular part being ordered. First, you have to drop

the existing check constraint, as follows:

ALTER TABLE orders

DROP CONSTRAINT status_ck;

Next, enter the following command to recreate the STATUS CK check constraint

as a deferrable constraint:

ALTER TABLE orders

ADD CONSTRAINT status_ck
CHECK (status IN ('F','B')) DEFERRABLE;

Now let's test the deferrable constraint. To defer the enforcement of a deferrable

constraint, you start a transaction with the SQL command SET CONSTRAINTS, which

has the following syntax:

SET CONSTRAINT[S]
{ [schema.]constraint [,[schema.]constraint] ...

 |ALL }
{ IMMEDIATE | DEFERRED }

Notice that the SET CONSTRAINTS command lets you explicitly set the

enforcement of specific or all constraints. To defer the enforcement of our STATUS CK

constraint, start the new transaction with the following statement:

SET CONSTRAINTS status_ck DEFERRED;

Next, enter the following statement to insert a record into the ORDERS table that

does not meet the condition of the STATUS_CK check constraint the STATUS code for

the order is "U" rather than "B" or "F".

INSERT INTO orders
 (id, c_id, orderdate, shipdate, paiddate, status)

VALUES (1,1,'18 JUN 99','18 JUN 99','30 JUN 99','U');

Now, commit the transaction with a COMMIT statement, to see what happens.

Oracle should return the following error messages:

COMMIT;

ORA 02091: transaction rolled back

ORA 02290: check constraint (PRACTICE07.STATUS_CK) violated

When you commit the transaction, Oracle enforces the rule of the STATUS CK

deferrable constraint and notices that the new row in the ORDERS table does not comply

with the associated business rule. Therefore, Oracle rolls back all of the statements in the

current transaction.

7.5. Views

Once you define the tables in a database, you can start to focus on other things

that enhance the usability of the application schema. You can start by defining views of

the tables in your schema. A view is a database object that presents table data. Why and

how would you use views to present table data?

 You can use a simple view to expose all rows and columns in a table, but hide

the name of the underlying table for security purposes. For example, you

might create a view called CUST that presents all customer records in the

CUSTOMERS table.

 You can use a view to protect the security of specific table data by exposing

only a subset of the rows and/or columns in a table. For example, you might

create a view called CUST_CA that presents only the LASTNAME,

FIRSTNAME, and PHONE columns in the CUSTOMERS table for customers

that reside in the state of California.

 You can use a view to simplify application coding. A complex view might

join the data of related parent and child tables to make it appear as though a

different table exists in the database. For example, you might create a view

called ORDER ITEMS that joins related records in the ORDERS and ITEMS

tables.

 You can use a view to present derived data that is not actually stored in a

table. For example, you might create a view of the ITEMS table with a

column called TOTAL that calculates the line total for each record.

As you can see from this list, views provide a flexible means of presenting the

table data in a database. In fact, you can create a view of any data that you can represent

with a SQL query. That's because a view is really just a query that Oracle stores as a

schema object. When an application uses a view to do something, Oracle derives the data

of the view based on the view's defining query. For example, when an application queries

the CUST_CA view described in the previous list, Oracle processes the query against the

data described by the view's defining query.

7.5.1. Creating Views

To create a view, you use the SQL command CREATE VIEW. The following is

an abbreviated syntax listing of the CREATE VIEW command:

CREATE [OR REPLACE] VIEW [schema.]view
 AS subquery
 [WITH READ ONLY]

The next few sections and practice exercises explain more about the specific types

of views that Oracle supports, and provide you with examples of using the various

clauses, parameters, and options of the CREATE VIEW command.

7.5.2. Read Only Views

One type of view that Oracle supports is a read only view. As you might expect,

database applications can use a read only view to retrieve corresponding table data, but

cannot insert, update, or delete table data through a read only view.

EXERCISE 7.11: Creating a Read Only View

Enter the following statement to create a read only view of the ORDERS table

that corresponds to the orders that are currently on backlog.

CREATE VIEW backlogged_Orders
AS SELECT * FROM orders

WHERE status = 'B'
WITH READ ONLY;

Notice the following points about this first example of the CREATE VIEW

command.

 The AS clause of the CREATE VIEW command specifies the view's defining

query. The result set of a view's defining query determines the view's structure

(columns and rows).

 To create a read only view, you must specify the WITH READ ONLY option

of the CREATE VIEW command to explicitly declare that the view is read

only; otherwise, Oracle creates the view as an updateable view.

7.5.3. Updateable Views

Oracle also allows you to define updateable views that an application can use to

insert, update, and delete table data or query data.

EXERCISE 7.12: Creating an Updateable View

To create a view as an updateable view, simply omit the WITH READ ONLY

option of the CREATE VIEW command when you create the view. For example, enter

the following CREATE VIEW statement, which creates an updateable join view of the

ORDERS and PARTS tables.

 CREATE VIEW orders_items
AS

 SELECT o.id AS orderid,
 o.orderdate AS orderdate,

 o.c_id AS customerid,
 i.id AS itemid,
 i.quantity AS quantity,

 i.p_id AS partid
 FROM orders o, items i

WHERE o.id = i.o_id;

Even though you declare a view as updateable, Oracle doesn't automatically

support INSERT, UPDATE, and DELETE statements for the view unless the view's

definition complies with the materialized view principle. Briefly stated, the materialized

view principle ensures that the server can correctly map an insert, update, or delete

operation through a view to the underlying table data of the view.

The ORDERS ITEMS view is an example of a view that does not comply with

the materialized view principle because the view joins data from two tables. Therefore,

even though you created the ORDERS ITEMS view as updateable, Oracle does not

support INSERT, UPDATE, and DELETE statements with the view until you create one

or more INSTEAD OF triggers for the updateable view.

7.5.4. INSTEAD OF Triggers and Updateable Views

Even when a view's attributes violate the materialized view principle, you can

make the view updateable if you define INSTEAD OF triggers for the view. An

INSTEAD OF trigger is a special type of row trigger that you define for a view. An

INSTEAD OF trigger explains what should happen when INSERT, UPDATE, or

DELETE statements target the view that would otherwise not be updateable.

EXERCISE 7.13: Creating an INSTEAD OF Trigger for an Updateable View

To create an INSTEAD OF trigger, use the following syntax of the CREATE

TRIGGER command:

CREATE [OR REPLACE] TRIGGER trigger
 INSTEAD OF

 {DELETE|INSERT|UPDATE [OF column [,column] ...]}
 [OR {DELETE|INSERT|UPDATE [OF column [,column] ...]}] ...

 ON table/view }
 ... PL/SQL block ...
END [trigger]

For example, enter the following statement, which creates an INSTEAD OF

trigger that defines the logic for handling an INSERT statement that targets the

ORDERS_ITEMS view.

CREATE OR REPLACE TRIGGER orders_items_insert
 INSTEAD OF INSERT ON orders_items

 DECLARE
 currentOrderId INTEGER;

 currentOrderDate DATE;
 BEGIN
 -- Determine if the order already exists.

 SELECT id, orderdate
 INTO currentOrderId, currentOrderDate

 FROM orders
 WHERE id = :new.orderid;
 -- If the NO DATA FOUND exception is not raised,

 -- insert a new item into the ITEMS table.
 INSERT INTO items

 (o_id, id, quantity, p_id)
 VALUES (:new.orderid, :new.itemid,
 :new.quantity, :new.partid);

EXCEPTION
WHEN no_data_found THEN

 INSERT INTO orders
 (id, orderdate, c_id)
 VALUES (:new.orderid, :new.orderdate,

 :new.customerid);
 INSERT INTO items

 (o_id, id, quantity, p_id)
 VALUES (:new.orderid, :new.itemid,
 :new.quantity, :new.partid);

END orders_items_insert;
/

Now, when an INSERT statement targets the ORDER_ITEMS view, Oracle will

translate the statement using the logic of the ORDERS_ITEMS_INSERT trigger to insert

rows into the underlying ORDERS and ITEMS tables. For example, enter the following

INSERT statement:

INSERT INTO orders_items
(orderid, orderdate, customerid, itemid, quantity)
VALUES (1, '18-JUN-99', 1, 1, 1);

Now, query the ORDERS and ITEMS tables to see that the trigger worked as

planned.

SELECT * FROM orders;

ID ORDERDATE SHIPDATE PAIDDATE S C_ID

-- --------- -------- -------- -- ----
1 18 JUN 99 F 1

SELECT * FROM items;

O_ID ID P_ID QUANTITY

------- ----- ------- --------------
1 1 1

7.6. Sequences

An OLTP (On-Line Transaction Processing) application, such as an airline

reservation system, typically supports a large number of concurrent users. As each user's

transaction inserts one or more new rows into various database tables, coordinating the

generation of unique primary keys among multiple, concurrent transactions can be a

significant challenge for the application.

Fortunately, Oracle has a feature that makes the generation of unique values a

trivial matter. A sequence is a schema object that generates a series of unique integers,

and is appropriate only for tables that use simple, numerical columns as keys, such as the

ID columns used in all tables of our practice schema. When an application inserts a new

row into a table, the application simply requests a database sequence to provide the next

available value in the sequence for the new row's primary key value. What's more, the

application can subsequently reuse a generated sequence number to coordinate the

foreign key values in related child rows. Oracle manages sequence generation with an

insignificant amount of overhead, allowing even the most demanding of online

transaction processing (OLTP) applications to perform well.

7.6.1. Creating and Managing Sequences

To create a sequence, you use the SQL command CREATE SEQUENCE.

CREATE SEQUENCE [schema.]sequence
 [START WITH integer]

 [INCREMENT BY integer]

 [MAXVALUE integer|NOMAXVALUE]
 [MINVALUE integer|NOMINVALUE]

 [CYCLE|NOCYCLE]
 [CACHE integer|NOCACHE]

 [ORDER|NOORDER]

Notice that when you create a sequence, you can customize it to suit an

application's particular needs; for example, an Oracle sequence can ascend or descend by

one or more integers, have a maximum or minimum value, and more.

If need be, you can subsequently alter the properties of a sequence using the SQL

command ALTER SEQUENCE. The ALTER SEQUENCE command supports the same

options and parameters as the CREATE SEQUENCE command, with the exception of

the START WITH parameter.

EXERCISE 7.14: Creating a Sequence

Enter the following CREATE SEQUENCE statement to create a sequence for

sales order IDs.

CREATE SEQUENCE order_ids

START WITH 2
INCREMENT BY 1
NOMAXVALUE;

The ORDER_IDS sequence starts with the integer 2 (remember, we already have

a record in the ORDERS table with an ID set to 1), increments every sequence generation

by 1, and has no maximum value.

EXERCISE 7.15: Using and Reusing a Sequence Number

To generate a new sequence number for your user session, a SQL statement must

reference the sequence and its NEXTVAL pseudocolumn. Enter the following INSERT

statement to insert a new sales order and use the ORDER IDS sequence to generate a

unique order ID.

NOTE
A pseudocolumn is similar to a column in a table. SQL statements can

reference pseudocolumns to retrieve data, but cannot insert, update, or

delete data by referencing a pseudocolumn.

INSERT INTO orders
(id, c_id, orderdate, status)

VALUES (order_ids.NEXTVAL,2,'18-JUN-99','B');

NOTE
Once your session generates a new sequence number, only your session

can reuse the sequence number--other sessions generating sequence

numbers with the same sequence receive subsequent sequence numbers of

their own.

To reuse the current sequence number assigned to your session, a SQL statement

must reference the sequence and its CURRVAL pseudocolumn. Using the CURRVAL

pseudocolumn, your session can reuse the current sequence number any number of times,

even after a transaction commits or rolls back. For example, enter the following INSERT

statements to insert several new line items into the ITEMS table for the current order, and

then commit the transaction.

 INSERT INTO items

(o_id, id, quantity)
VALUES (order_ids.CURRVAL,1,1);

INSERT INTO items
(o_id, id, quantity)
VALUES (order_ids.CURRVAL,2,4);

INSERT INTO items

(o_id, id, quantity)
VALUES (order_ids.CURRVAL,3,5);

COMMIT;

7.7. Synonyms

When developers build a database application, it's prudent to avoid having

application logic directly reference tables, views, and other database objects. Otherwise,

applications must be updated and recompiled after an administrator makes a simple

modification to an object, such as a name change or structural change.

To help make applications less dependent on database objects, you can create

synonyms for database objects. A synonym is an alias for a table, view, sequence, or other

schema object that you store in the database. Because a synonym is just an alternate name

for an object, it requires no storage other than its definition. When an application uses a

synonym, Oracle forwards the request to the synonym's underlying base object.

7.7.1. Private and Public Synonyms

Oracle allows you to create both public and private synonyms. A public synonym

is an object alias (another name) that is available to every user in a database. A private

synonym is a synonym within the schema of a specific user who has control over its use

by others.

7.7.2. Creating Synonyms

To create a synonym, use the SQL command CREATE SYNONYM.

 CREATE [PUBLIC] SYNONYM [schema.]synonym

 FOR [schema.]object

If you include the optional PUBLIC keyword, Oracle creates a synonym as a

public synonym; otherwise, Oracle creates a synonym as a private synonym.

EXERCISE 7.16: Creating a Synonym

Enter the following statement to create the private synonym CUST in the current

schema. The private synonym is an alias for the CUSTOMERS table in the same schema.

CREATE SYNONYM cust
FOR customers;

Next, enter the following statement to create a public synonym for the

SALESREPS table of the current schema.

CREATE PUBLIC SYNONYM salespeople
FOR salesreps;

EXERCISE 7.17: Using a Synonym

The use of a synonym is transparent just reference the synonym anywhere you

would its underlying object. For example, enter the following query that uses the new

CUST synonym.

SELECT id, lastname FROM cust;

The result set is as follows:

 ID LASTNAME

-- ------------

1 Joy

2 Musial

7.8. Indexes

The performance of an application is always critical. That's because the

productivity of an application user directly relates to the amount of time that the user

must sit idle while the application tries to complete work. With database applications,

performance depends greatly on how quickly an application can access table data.

Typically, disk I/O is the primary performance determining factor for table access the less

disk I/O that's necessary to access table data, the better the dependent applications will

perform. In general, it's best to try to minimize the amount of disk access that

applications must perform when working with database tables.

NOTE
This section introduces indexes to support subsequent sections of this book. For

complete information about the various types of indexes that Oracle supports and

other performance related topics, see Chapter 12.

The judicious use of table indexes is the principal method of reducing disk I/O

and improving the performance of table access. Just like an index in a book, an index of

a table column (or set of columns) allows Oracle to quickly find specific table records.

When an application queries a table and uses an indexed column in its selection criteria,

Oracle automatically uses the index to quickly find the target rows with minimal disk I/O.

Without an index, Oracle has to read the entire table from disk to locate rows that match a

selection criteria. The presence of an index for a table is entirely optional and transparent

to users and developers of database applications. For example:

 Applications can access table data with or without associated indexes.

 When an index is present and it will help the performance of an application

request, Oracle automatically uses the index; otherwise, Oracle ignores the index.

 Oracle automatically updates an index to keep it in synch with its table.

Although indexes can dramatically improve the performance of application

requests, it's unwise to index every column in a table. Indexes are meaningful only for the

key columns that application requests specifically use to find rows of interest.

Furthermore, index maintenance generates overhead--unnecessary indexes can actually

slow down your system rather than improve its performance.

Oracle supports several different types of indexes to satisfy many types of

application requirements. The most frequently used type of index in an Oracle database is

a B tree index, sometimes referred to a normal index in the Oracle documentation set.

The following sections explain more about B tree indexes, which you can create for a

table's columns.

7.8.1. B Tree Indexes

The default and most common type of index for a table column is a B tree index.

A B tree index, or normal index, is an ordered tree of index nodes, each of which contains

one or more index entries. Each index entry corresponds to a row in the table, and

contains two elements:

 The indexed column value (or set of values) for the row

 The ROWID (or physical disk location) of the row

A B-tree index contains an entry for every row in the table, unless the index entry

for a row is null. Figure 7-4 illustrates a typical B-tree index.

When using a B tree index, Oracle descends the tree of index nodes looking for

index values that match the selection criteria of the query. When it finds a match, Oracle

uses the corresponding ROWID to locate and read the associated table row data from

disk.

FIGURE 7-4. A B-tree index

7.8.2. Using B- Tree Indexes Appropriately

B tree indexes are not appropriate for all types of applications and all types of

columns in a table. In general, B tree indexes are the best choice for OLTP

applications where data is constantly being inserted, updated, and deleted. In such

environments, B tree indexes work best for key columns that contain many distinct

values relative to the total number of key values in the column. The primary and

alternate keys in a table are perfect examples of columns that should have B tree

indexes. Conveniently, Oracle automatically creates B tree indexes for all primary

key and unique integrity constraints of a table.

7.8.3. Creating B Tree Indexes

To create an index, you use the SQL command CREATE INDEX. The following

is an abbreviated version of the syntax listing for the CREATE INDEX command that

focuses solely on the parts of that command that pertain to B tree (normal) indexes.

CREATE [UNIQUE] INDEX [schema.]index

 ON { [schema.] table
 (column [ASC|DESC] [, column [ASCIDESC]] ...)

Notice the following points about the CREATE INDEX command:

 By including the optional keyword UNIQUE, you can prevent duplicate

values in the index. However, rather than creating a unique index, Oracle

Corp. recommends that you declare a unique constraint for a table so that the

integrity constraint is visible along with other integrity constraints in the

database.

 You must specify one or more columns to be indexed. For each index, you can

specify that you want the index to store values in ascending or descending

order.

NOTE
Versions of Oracle previous to Oracle8i supported the DESC keyword when

creating a B tree index, but always created ascending indexes. Oracle now

supports descending indexes.

EXERCISE 7.18: Creating a B-Tree Index

To facilitate faster joins between the ITEMS and PARTS tables, enter the

following command, which creates a B tree index for the columns in the PARTS_FK

foreign key column of the ITEMS table.

CREATE INDEX items_p_id

ON items (p_id ASC);

7.9. The Data Dictionary: A Unique Schema

Every Oracle database uses a number of system tables and views to keep track of

metadata--data about the data in a database. This collection of system objects is called

the Oracle database's data dictionary or system catalog. Oracle organizes a database's

data dictionary within the SYS schema.

As you create and manage schemas in an Oracle database, you can reveal

information about associated schema objects by querying the tables and views of the data

dictionary. For example, Table 7-3 provides a list of the several data dictionary views that

correspond to the schema objects introduced in this chapter.

Type of Schema Object Data Dictionary Views of Interest

Tables and Columns

DBA_TABLES, ALL_TABLES, and USER_TABLES

display general information about database tables.

DBA_TAB_COLUMNS, ALL _TAB_ COLUMNS, and

USER _TAB _COLUMNS display information about the

columns in each database table.

NOTE: DBA_OBJECTS, ALL_OBJECTS, and USER_

OBJECTS display information about schema objects,

including tables.

Integrity Constraints
DBA_CONSTRAINTS, ALL _CONSTRAINTS, and

USER _CONSTRAINTS display general information

about constraints.

DBA _CONS _COLUMNS, ALL _CONS _COLUMNS,

and USER _CONS _COLUMNS display information

about columns and associated constraints. Views,

DBA _VIEWS, ALL_ VIEWS, and USER _VIEWS.

NOTE: DBA_OBJECTS, ALL_OBJECTS, and

USER_OBJECTS also display information about schema

objects, including views.

Sequences

DBA_SEQUENCES, ALL_SEQUENCES, and

USER_SEQUENCES.

NOTE: DBA_OBJECTS, ALL _OBJECTS, and

USER _OBJECTS display information about schema

objects, including sequences.

Synonyms

DBA _SYNONYMS, ALL _SYNONYMS, and

USER _SYNONYMS.

NOTE: DBA _OBJECTS, ALL _OBJECTS, and

USER _OBJECTS display information about schema

objects, including synonyms.

Indexes

DBA_INDEXES, ALL _INDEXES, USER _INDEXES,

DBA_IND COLUMNS, ALL_IND_COLUMNS, and

USER _IND _COLUMNS.

 TABLE 7-3. The Data Dictionary Views that Correspond to Tables, Columns,

Constraints, Views, Sequences, Synonyms, and Indexes

Categories of Data Dictionary Views

Oracle's data dictionary contains several different categories of data dictionary

views:

 Views that begin with the prefix "DBA " present all information in the

corresponding data dictionary base tables. Because the DBA views are

comprehensive, they are accessible only to users that have the SELECT ANY

TABLE system privilege. (See Chapter 9 for more information about privileges

and database security.)

 Views that begin with the prefix "ALL " are available to all users and show things

specific to the privilege domain of the current user.

 Views that begin with the prefix 'USER " are available to all users and show

things specific to the current user.

EXERCISE 7.19: Querying the Data Dictionary

In this final practice exercise of this chapter, let's query the data dictionary to

reveal information about the integrity constraints created in the previous exercises in this

chapter. For this query, we need to target the USER_CONSTRAINTS data dictionary

view. First, enter the following DESCRIBE command to reveal the columns available in

the USER_CONSTRAINTS view.

DESCRIBE user_constraints;

Name Null? Type

------------------------- --------------- ----------------------
OWNER NOT NULL VARCHAR2(30)
CONSTRAINT_NAME NOT NULL VARCHAR2(30)

CONSTRAINT_TYPE VARCHAR2(1)
TABLE NAME NOT NULL VARCHAR2(30)

SEARCH_CONDITION LONG
R_OWNER VARCHAR2(30)
R_CONSTRAINT_NAME VARCHAR2(30)

DELETE_RULE VARCHAR2(9)
STATUS VARCHAR2(8)

DEFERRABLE VARCHAR2(14)
DEFERRED VARCHAR2(9)
VALIDATED VARCHAR2(13)

GENERATED VARCHAR2(14)
BAD VARCHAR2(3)

RELY VARCHAR2(4)
LAST_CHANGE DATE

As you can see, the USER_CONSTRAINTS view contains many columns for

recording the properties of integrity constraints. For this exercise, enter the following

query to display the name of each constraint, the table that it is associated with, the type

of constraint, and whether the constraint is deferrable.

SELECT constraint_name, table_name,

 DECODE(constraint_type,

 'C', 'CHECK',

 'P', 'PRIMARY KEY',

 'U','UNIQUE',

 'R','REFERENTIAL',

 '0','VIEW WITH READ ONLY',

 'OTHER') constraint_type,

 deferrable

 FROM user_constraints;

If you completed the previous exercises in this chapter, the result set of the query

should be as follows:

CONSTRAINT NAME TABLE NAME CONSTRAINT TYPE DEFERRABLE

--------------- ------------- ----------------- -------------

SYS_C002892 BACKLOGGED_ORDERS VIEW WITH READ ONLY NOT DEFERRABLE

CUSTOMERS_PK CUSTOMERS PRIMARY KEY NOT DEFERRABLE

SYS_CO02882 CUSTOMERS UNIQUE NOT DEFERRABLE

SALESREPS_FK CUSTOMERS REFERENTIAL NOT DEFERRABLE

QUANTITY_NN ITEMS CHECK NOT DEFERRABLE

ITEMS_PK ITEMS PRIMARY KEY NOT DEFERRABLE

ORDERS_FK ITEMS REFERENTIAL NOT DEFERRABLE

PARTS_FK ITEMS REFERENTIAL NOT DEFERRABLE

SYS_C002876 ORDERS CHECK NOT DEFERRABLE

STATUS_CK ORDERS CHECK DEFERRABLE

ORDERS_PK ORDERS PRIMARY KEY NOT DEFERRABLE

C_ID_NN ORDERS CHECK NOT DEFERRABLE

CUSTOMERS_FK ORDERS REFERENTIAL NOT DEFERRABLE

SYS CO02879 PARTS CHECK NOT DEFERRABLE

PARTS_PK PARTS PRIMARY KEY NOT DEFERRABLE

SALESREPS_PK SALESREPS PRIMARY KEY NOT DEFERRABLE

16 rows selected.

Notice that Oracle generated unique names starting with the prefix "SYS_ " for all

of the constraints that you did not explicitly name. The DECODE expression in the

query's SELECT clause translates codes in the CONSTRAINT_TYPE column to

readable information.

Chapter Summary

This chapter has introduced many different types of objects that you can create in

a basic relational database schema.

 Tables are the basic data structure in any relational database. A table is nothing

more than an organized collection of rows that all have the same columns. A

column's datatype describes the basic type of data that is acceptable in the

column. To create and alter a table's structure, you use the SQL commands

CREATE TABLE and ALTER TABLE.

 To enforce business rules that describe the acceptable data for columns in a table,

you can declare integrity constraints along with a table. You can use domain

integrity constraints, such as not null constraints and check constraints, to

explicitly define the domain of acceptable values for a column. You can use entity

integrity constraints, such as primary key and unique constraints, to prevent

duplicate rows in a table. And finally, you can use referential integrity constraints

to establish and enforce the relationships among different columns and tables in a

database. You can declare all types of integrity constraints when you create a

table with the CREATE TABLE command, or after table creation with the

ALTER TABLE command.

 A view is a schema object that presents data from one or more tables. A view is

nothing more than a query that Oracle stores in a database's data dictionary as a

schema object. When you use a view to do something, Oracle derives the data of

the view from the view's defining query. To create a view, you use the SQL

command CREATE VIEW.

 A sequence is a schema object that generates a series of unique integers.

Sequences are most often used to generate unique primary keys for ID type

columns. When an application inserts a new row into a table, the application can

request a database sequence to generate the next available value in the sequence

for the new row's primary key value. The application can subsequently reuse a

generated sequence number to coordinate the foreign key values in related child

rows. To create a sequence, use the SQL command CREATE SEQUENCE. To

generate and then reuse a sequence number, reference the sequence's NEXTVAL

and CURRVAL pseudocolumns, respectively.

 To help make applications less dependent on tables and other schema objects, you

can create synonyms for schema objects. A synonym is an alias for a table, view,

sequence, or other schema object that you store in the database. You create

synonyms with the SQL command CREATE SYNONYM.

 To improve the performance of table access, you can create an index for one or

more columns in the table. Use the SQL command CREATE INDEX to create an

index.

