Sec 2.3 Set Operations & Cartesian Products

★ Intersection of sets: $A \cap B$ is the set of elements common to both: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

Find the intersections of the following sets:

Disjoint Sets

- Disjoint sets: two sets which have no elements in common.
 - I.e., their intersection is empty: $A \cap B = \emptyset$

Are the following sets disjoint?

Set Union

♦ Union of sets: $A \cup B$ is the set of elements belonging to either of the sets: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

Note: an element in the union of sets A and B may be a member of A, a member of B, or a member of **both** sets.

Find the unions of the following sets:

Set Difference

Difference of two sets: A - B is the set of all elements belonging to set A and not to set B.

 $A - B = \{ x \mid x \in A \text{ and } x \notin B \}$

$$\{1, 2, 3, 4, 5\} - \{2, 4, 6\} = \{1, 3, 5\}$$

but $\{2, 4, 6\} - \{1, 2, 3, 4, 5\} = \{6\}$
Note: $x \notin B \rightarrow x \in B'$ (the complement of B)
Thus, $A - B = \{x \mid x \in A \text{ and } x \notin B\}$

$$= \{x \mid x \in A \text{ and } x \notin B \}$$
$$= \{x \mid x \in A \text{ and } x \in B' \}$$
$$= A \cap B'$$

Given the sets:

 $U = \{1, 2, 3, 4, 5, 6, 9\}$ $A = \{1, 2, 3, 4\}$ $B = \{2, 4, 6\}$ $C = \{1, 3, 6, 9\}$

Find each of these sets:

♦ A ∪ B =

A ∩ B =

♦ A ∩ U =

A ∪ U =

$$U = \{1, 2, 3, 4, 5, 6, 9\}$$

$$A = \{1, 2, 3, 4\}$$

$$B = \{2, 4, 6\}$$

$$C = \{1, 3, 6, 9\}$$

$$A' = \{1, 3, 6, 9\}$$

A' ∩ B =

A' ∪ B =

$\bullet \ A \cup B \cup C =$

• $A \cap B \cap C =$

Describe each of the following sets in words:

A' ∪ B' =

A' ∩ B' =

• $A \cap (B \cup C)$

• $(A' \cup C) \cap B$

✤ Given the sets:

$$U = \{1, 2, 3, 4, 5, 6, 7\}$$

$$A = \{1, 2, 3, 4, 5, 6\}$$

$$B = \{2, 3, 6\}$$

$$C = \{3, 5, 7\}$$

Find each set:

◆ A – B =

◆ B – A =

Note, in general, A - B = / B - A

Ordered Pairs

Ordered Pair: a group of two objects designated as first and second components.

In the ordered pair (a, b): a is called the first component b is called the second component

In general (a, b) =/(b, a), so order is important!

```
Two ordered pairs (a, b) and (c, d) are equal
provided a = c and b = d
(1, 3) = (1, 3)
(4, 9) = (4, 9)
(2+2, 3×3) = (2×2, 6+3)
```

```
Sets can contain ordered pairs:
{ (-3, 3), (-12, -6), (13, 29), (8, 7) }
{ (1, 3), (2, 6), (3, 9), ... }
```

Cartesian Products

★ The Cartesian product of sets A and B is:
A × B = {(a,b) | a ∈ A and b ∈ B}

The Cartesian product of {a, b, c} × {1, 2} = { (a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2) }

The Cartesian product of {1, 2} × {a, b, c} = { (1, a), (1, b), (1, c), (2, a), (2, b), (2, c) }

What's the difference between the two resulting sets above?

If set $A = \{x, y, z\}$, what is $A \times A$?

Cardinality of Cartesian Products

If set A has cardinality 5 and set B has cardinality 4, what is the cardinality of A × B?

Of $B \times A$?

If |A| = n and |B| = m, what is $|A \times B|$?

Set Operations

- Finding intersections, unions, differences, Cartesian products, and complements of sets are examples of set operations
- An operation is a rule or procedure by which one or more objects are used to obtain another object (usually a set or number).
- Common Set Operations

Let A and B be any sets, with U the universal set.

Complement of A is:
 A' = {x | x ∈ U and x ∉ A}

Set Intersection and Union

♦ Intersection of A and B is: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

• Union of A and B is: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

Set Difference

♦ Difference of A and B is: $A - B = \{x \mid x \in A \text{ and } x \notin B\}$

Cartesian Product

• The Cartesian product of A and B is: $A \times B = \{(x,y) \mid x \in A \text{ and } y \in B\}$

Complete the Venn Diagram to represent U, A, and B

• Shade the Diagram for: $A \cap B$

• Shade the Diagram for: $(A' \cap B') \cap C$

• Shade the Diagram for: $(A \cap B)'$

• Shade the Diagram for: $A' \cup B'$

Did we get these last two correct?

De Morgan's Laws

- De Morgan's Laws. For any sets A and B
 - $(A \cap B)' = A' \cup B'$
 - $(A \cup B)' = A' \cap B'$
- Sing A, B, C, ∩, ∪, -, and ', give a symbolic description of the shaded area in each of the following diagrams. Is there more than one way to describe each?

