Sec 3.2 Truth Tables and Equivalent Statements

Conjunction: Given two statements p and q, their conjunction is $\begin{array}{ccc} \textbf{P} & \land & \textbf{q}. \end{array}$

Conjunction Truth Table

р	q	$p \wedge q$	
T	T	T	
T	F	F	
F	T	F	
F	F	F	

© 2005-09, N. Van Cleave

Conjunction Examples Determine the truth values (T/F):

1. ___ Today is Tuesday and it is sunny.

2. ___ Today is Wednesday and it is sunny.

3. ___ The moon is made of green cheese and some violets are blue.

4. ___ It is daytime here and there are not 1000 desks in this

5. ___ This course is MAT 1160 and we are learning calculus.

6. ___ This course is MAT 4870 and we are learning physics.

7. ___ 3 < 5 \land 5 < 3

8. __ 3<5 \ 5<8

© 2005-09, N. Van Cleave

Disjunction

Disjunction. Given two statements p and q, their (inclusive) disjunction is p \vee q.

Inclusive disjunctions are TRUE if either or both components are TRUF

Disjunction Truth Table

р	q	p∨q
T	T	T
T	F	T
F	T	T
F	F	F

© 2005-09, N. Van Cleave

Disjunction Examples Determine the truth values:

1. ___ Today is Tuesday or it is sunny.

2. ___ Today is Wednesday or it is sunny.

3. ___ The moon is made of green cheese or some violets are

4. ___ It is daytime here or there are not 100 desks in this classroom.

5. _ This course is MAT 1160 or we are learning calculus.

6. ___ This course is MAT 4870 or we are learning physics.

7. ___ 3 < 5 \lor 5 < 3

8. __ 3 < 5 > 5 < 8

© 2005-09, N. Van Cleave

Mathematical Examples Using or

Statement	Reason It's True
7≥7	7 = 7
8≥5	8 > 5
-7 <u>-</u> -3	-7 < -3
-3 <u><</u> -3	-3 = -3

© 2005-09, N. Van Cleave

The Porsche & The Tiger

A prisoner must make a choice between two doors: behind one is a beautiful red Porsche, and behind the other is a hungry tiger. Each door has a sign posted on it, but only one sign is true.

Door #1. IN THIS ROOM THERE IS A PORSCHE AND IN THE OTHER ROOM THERE IS A TIGER

Door #2. IN ONE OF THESE ROOMS THERE IS A PORSCHE AND IN ONE OF THESE ROOMS THERE IS A TIGER.

With this information, the prisoner is able to choose the correct door... Which one is it?

© 2005-09, N. Van Cleave

6

Negation

Negation. Given a statement p, its negation is $\sim p$.

Negation Truth Table

р	\sim p	
T	F	
F	T	

© 2005-09, N. Van Cleave

Negation Examples Determine the truth values

Assume p is TRUE, q is FALSE, and r is FALSE

- 1. ___ p
- 2. ___ ~ p
- 3. ___ q
- 4. ___ ~ q
- 5. __ r
- 7. ___ ~ p ∧ p
- 8. ___ p ∨ ∼p
- 9. $\underline{\hspace{1cm}}$ p \wedge \sim q 10. $\underline{\hspace{1cm}}$ p \vee \sim q
- 11. \longrightarrow $\sim p \land (q \lor \sim r)$ 12. \longrightarrow $p \land (\sim q \lor r)$

© 2005-09, N. Van Cleave

More Examples Determine the truth values

Let p represent the statement 3 > 2q represent the statement 5 < 4

r represent the statement $3 \le 8$

- 1. ___ p
- 2. ___ ∼ p
- 3. ___ q
- 4. ___ ~ q
- 5. ___ r
- 5. ___ ∼r
- 7. ___ ~ p ∧ q
- 8. ___ ~ (p ^ q)
- 9. \longrightarrow $\sim p \lor (\sim q \lor r)$ 10. \longrightarrow $(\sim p \land r) \lor (\sim q \land \sim p)$

© 2005-09, N. Van Cleave

Yet More Examples

- 11. ___ For some real number x, x > 2 and x < 8
- 12. ___ There exists a real number b, b < 8 or b > 2
- 13. ___ For at least one real number y, y < 8 and y > 12
- 14. ___ There is a real number m, m < 8 or m > 12
- 15. _ For all real numbers x, x < 8 and x > 2
- 16. _ For every real number b, b < 8 or b > 2
- 17. _ For all real numbers y, y < 8 and y > 12
- 18. ___ For every real number m, m < 8 or m > 12
- 19. _ For every real number n, $n^2 > 0$
- 20. _ For every real number n, $n^2 \ge 0$

© 2005-09, N, Van Cleave

Constructing Truth Tables

Construct a Truth Table for: ($\sim p \ \land \ q) \ \lor \ \sim q$

р	q	$(\sim p \wedge q) \vee \sim q$
Т	Т	
Т	F	
F	Т	
F	F	

Construct a Truth Table for: $p \land (\sim p \lor \sim q)$

р	q	$p \wedge (\sim p \vee \sim q)$
Т	Т	
Т	F	
F	Т	
F	F	

© 2005-09, N. Van Cleave

© 2005-09, N. Van Cleave

12

Construct the Truth Table

р	q	r	\sim p \wedge (q \vee \sim r)
Т	Т	Т	
Т	Т	F	
Т	F	Т	
Т	F	F	
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	

© 2005-09, N. Van Cleave

Construct the Truth Table

р	q	r	$(\sim p \wedge r) \vee (\sim q \wedge \sim p)$
Т	Т	Т	
Т	Т	F	
Т	F	Т	
Т	F	F	
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	

© 2005-09, N. Van Cleave

Some Notes of Interest

A logical statement having \boldsymbol{n} component statements will have $2^{\boldsymbol{n}}$ rows in its truth table.

Two statements are equivalent if they have the same truth value in every possible situation.

In other words, two statements are $\mbox{\it equivalent}$ if their columns in the same truth table have the same truth values.

© 2005-09, N. Van Cleave

15

De Morgan's Laws

р	q	\sim p \land \sim q	\sim (p \lor q)
Т	Т		
Т	F		
F	Т		
F	F		

р	q	\sim p \lor \sim q	\sim (p \wedge q)
Т	Т		
Т	F		
F	Т		
F	F		

© 2005-09, N. Van Cleave

16