Sec 3.2 Truth Tables and Equivalent Statements

Conjunction: Given two statements p and q, their conjunction is $p \land q$.

Conjunction Truth Table

р	q	$p \land q$
Т	Т	T
Т	F	F
F	Т	F
F	F	F

Conjunction Examples Determine the truth values (T/F):

- 1. ____ Today is Tuesday and it is sunny.
- 2. ____ Today is Wednesday and it is sunny.
- 3. ____ The moon is made of green cheese and some violets are blue.
- 4. ____ It is daytime here and there are not 1000 desks in this classroom.
- 5. ____ This course is **MAT** 1160 and we are learning calculus.
- 6. ____ This course is **MAT** 4870 and we are learning physics.
- 7. ____ 3 < 5 ∧ 5 < 3

Disjunction

Disjunction. Given two statements p and q, their (inclusive) disjunction is $p \lor q$.

Inclusive disjunctions are TRUE if either or both components are TRUE.

Disjunction Truth Table

р	q	p ∨ q
Т	т	Т
Т	F	Т
F	Т	Т
F	F	F

Disjunction Examples Determine the truth values:

- 1. ____ Today is Tuesday or it is sunny.
- 2. ____ Today is Wednesday or it is sunny.
- 3. ____ The moon is made of green cheese **or** some violets are blue.
- 4. ____ It is daytime here or there are not 100 desks in this classroom.
- 5. ____ This course is **MAT** 1160 or we are learning calculus.
- 6. ____ This course is **MAT** 4870 or we are learning physics.
- 7. ____ 3 < 5 ∨ 5 < 3
- 8. ____ 3 < 5 ∨ 5 < 8

Mathematical Examples Using or

Statement	Reason It's True
7≥7	7 = 7
8 ≥ 5	8 > 5
-7 ≤ -3	-7 < -3
-3 ≤ -3	-3 = -3

The Porsche & The Tiger

A prisoner must make a choice between two doors: behind one is a beautiful red Porsche, and behind the other is a hungry tiger. Each door has a sign posted on it, but only one sign is true.

- **Door #1**. IN THIS ROOM THERE IS A PORSCHE AND IN THE OTHER ROOM THERE IS A TIGER.
- **Door #2**. IN ONE OF THESE ROOMS THERE IS A PORSCHE AND IN ONE OF THESE ROOMS THERE IS A TIGER.

With this information, the prisoner is able to choose the correct door... Which one is it?

Negation

Negation. Given a statement p, its negation is $\sim p$.

Negation Truth Table

Negation Examples Determine the truth values Assume p is TRUE, q is FALSE, and r is FALSE

2. ___ ∼ p 1. ____ p 4. ____ ~ ~ q 3. ____ q 5. ____ r 6. ___ ~r 8. ___ p \lor ~ p 7. ___ ~ $p \wedge p$ 9. ____ p $\wedge \sim q$ 10. ____ p \lor ~q 11. ____ ~ $\sim p \land (q \lor \sim r)$ 12. ____ $p \land (\sim q \lor r)$

More Examples Determine the truth values

Let p represent the statement 3 > 2q represent the statement 5 < 4r represent the statement $3 \le 8$

Yet More Examples

- 11. ____ For some real number x, x > 2 and x < 8
- 12. ____ There exists a real number b, b < 8 or b > 2
- 13. ____ For at least one real number y, y < 8 and y > 12
- 14. ____ There is a real number m, m < 8 or m > 12
- 15. ____ For all real numbers x, x < 8 and x > 2
- 16. ____ For every real number b, b < 8 or b > 2
- 17. ____ For all real numbers y, y < 8 and y > 12
- 18. ____ For every real number m, m < 8 or m > 12
- 19. ____ For every real number n, $n^2 > 0$
- 20. ____ For every real number n, $n^2 \ge 0$

Constructing Truth Tables

Construct a Truth Table for: ($\sim p \land q$) $\lor \sim q$

р	q	(\sim p \land q) \lor \sim q
Т	Т	
Т	F	
F	Т	
F	F	

Construct a Truth Table for: $p \land (\sim p \lor \sim q)$

р	q	p \land (\sim p \lor \sim q)
Т	Т	
Т	F	
F	Т	
F	F	

Construct the Truth Table

р	q	r	\sim p \wedge (q \vee \sim r)
Т	Т	Т	
Т	Т	F	
Т	F	Т	
Т	F	F	
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	

Construct the Truth Table

р	q	r	$(\sim p \land r) \lor (\sim q \land \sim p)$
Т	Т	Т	
Т	Т	F	
Т	F	Т	
Т	F	F	
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	

Some Notes of Interest

A logical statement having n component statements will have 2^n rows in its truth table.

Two statements are **equivalent** if they have the same truth value in **every** possible situation.

In other words, two statements are **equivalent** if their columns in the same truth table have the same truth values.

De Morgan's Laws

р	q	\sim p \land \sim q	\sim (p \lor q)
Т	Т		
Т	F		
F	Т		
F	F		

р	q	\sim p \lor \sim q	\sim (p \wedge q)
Т	Т		
Т	F		
F	Т		
F	F		