Sec 3.3 Review

- * A conditional statement uses implication (\rightarrow) or if...else
- * $p \rightarrow q$ is false only when p is true and q is false.
- * $p \rightarrow q$ is equivalent to (~ $p \lor q$)
- We can use Truth Tables to show two conditional expressions are equivalent (their truth values will be the same)
- * A tautology is a statement which is always TRUE.
- Circuits in series correspond to conjunctions (ands)
- Circuits in parallel correspond to disjunctions (ors)
- * Some circuits can be simplified.

© 2005-09, N. Van Cleave

Rewrite as Boolean Expressions and Simplify

1

	Direct Statement	$p \to q$	If p, then q	
	Converse	$q \to p$	If q, then p	
	Inverse	\sim p \rightarrow \sim q	If not p, then not	
	Contrapositive	\sim q $\rightarrow \sim$ p	If not q, then not	
Dir Con	ect Statement ($p ightarrow q$ verse:):		
Dire Con Inv	ect Statement ($p \rightarrow q$ verse: erse:):		

Rolling stones gather no moss.

Birds of a feather flock together.

2. r implies s

11

3. If r, then s

1. r only if s

4. r is necessary for s

others... Which one is it?

A triangle is equilateral only if it has three equal sides.

One of the following statements is not equivalent to the

© 2005-09, N. Van Cleave

© 2005-09, N. Van Cleave

12

Consistent or Contrary?

Two statements about the same object are: consistent — if they are both true. contrary — if they cannot both be true.

- 1. The car is a Chevy. The car is a Toyota.
- 2. Elvis is alive. Elvis is dead.
- 3. The animal has four legs. The animal is a dog.
- 4. The cake is chocolate. The cake has two layers.
- 5. The clock is broken. The clock has the right time.
- 6. The math class meets at noon. The math class lasts 50 minutes.
- © 2005-09, N. Van Cleave

- 7. The number is an integer. The number is irrational.
- 8. The punch is pink. The punch has juice in it.
- 9. President Bush is a Republican. President Bush is a Democrat.
- 10. The sofa is soft. The sofa is blue.
- 11. The plant is blooming. The plant is dead.
- 12. The dog ate my homework. The dog bites.
- 13. That rock is igneous. That rock is sedimentary.
- 14. That bird is a robin. That bird is blue.

© 2005-09, N. Van Cleave

13

Biconditionals Biconditional: compound statement of the form p if and only if q, written $p \leftrightarrow q$ or p iff q. $\mathsf{p} \leftrightarrow \mathsf{q} \text{ is equivalent to } (\mathsf{p} \rightarrow \mathsf{q}) \land (\mathsf{q} \rightarrow \mathsf{p})$ $\begin{array}{c} \mathsf{or} \\ \mathsf{p} \leftrightarrow \mathsf{q} \equiv (\mathsf{p} \rightarrow \mathsf{q}) \wedge (\mathsf{q} \rightarrow \mathsf{p}) \end{array}$ Truth Table for $p \leftrightarrow q$ $q \mid p \leftrightarrow q$ р Т Т Т ΤF F F Т F F F Т © 2005-09, N. Van Cleave 15

In Summary						
\sim p	negation of p	truth value is opposite of p				
p∧q	conjunction	true only when both p and q are true				
$p \lor q$	disjunction	false only when both p and q are false				
$p \to q$	conditional	false only when p is true and q is false				
p ↔ q	biconditional	true only when p and q have the same truth value				

True or False?								
A biconditional is both statements o	true are fai	only when bo Lse.	oth stat	ements are	true or			
True or False:	5 = 9 -	- 4 if and only	if 8+2	= 10				
True or False:	Clintor	n was presiden	t IFF Ca	rter wasn't	president.			
True or False:	IBM s	ells computer:	s iff Piz	za Hut sells	Big Macs.			
True or False:	8+7	15 IFF 3×5	9.					

© 2005-09, N. Van Cleave

16

14