
Konigsberg Bridge Problem

The old Prussian city of Konigsberg, located on the banks of the
Pregel River, included two islands which were joined to the banks
and to each other by seven bridges:
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Because sex and television hadn’t been invented yet, the
townspeople strolled about the town and across the bridges, and
had entirely too much time to think. . .
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Eventually, someone tried to determine a walk which began at their
front door, crossed each bridge exactly once, and allowed them to
return to their front door. . .
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They weren’t able to do this, so took the problem to the famous and
fabulously well respected mathematician, Leonhard “Lenny” Euler!

He was able to solve the problem, and thus spawned the branch of
mathematics known as Graph Theory!
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Graphs

v A graph consists of a set of vertices (points) and a set of edges (lines)
which join these vertices.

v This definition is very different from what is meant when we say we
want to graph an equation, for example, or the bar graphs we looked
at earlier in the semester.

v The graphs we’ll be discussing are simply convenient diagrams that
show the relations or connections between objects in some collection
or set.

v This type of graph enables us to communicate and analyze complex
information using a visual method, which is often helpful to humans.

© 2005–2009, N. Van Cleave 3

Applications

Graphs have many real–world applications, for example:

v road maps and atlases

v chemical molecules

v tournament schedules

v organizational charts

v robotic motion planning

v assembly instructions

You’ve probably run across many of these examples in your own life.
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Graph Example — I
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Example 1. G1 = {V, E1}

V = {A, B, C, D, E, F}
E1 = {AB, AE, BD, CD, CF, DE, DF, EF}
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Graph Example — II
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Example 2. G2 = {V, E2}

V = {A, B, C, D, E, F}
E2 = {AC, BF, DF}

© 2005–2009, N. Van Cleave 6



Graph Example — III
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Example 3. G3 = {V, E3}

V = {A, B, C, D, E, F}
E3 = ∅
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Graph Example — IV
A
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Example 4. G4 = {V, E1}

V = {A, B, C, D, E, F}
E3 = {AB, AC, AD, AE, AF, BC, BD, BE, BF, CD, CE, CF,

DE, DF, EF}
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Representing Data

Consider this situation: a health–care worker has 10 clients assigned
to her: Andy, Claire, Dave, Erin, Glen, Katy, Joe, Mike, Sam, and
Tim. This worker needs to determine which groups of her clients
have had or shared social interactions with each other. She knows:

Person Played with:
Andy no one
Claire Dave, Erin, Glen, Katy, Sam
Dave Claire, Erin, Glen, Katy
Erin Claire, Dave, Katy
Glen Claire, Dave, Erin
Katy Claire, Dave, Erin
Joe Mike, Tim
Mike Joe
Sam Claire, Glen
Tim Joe

However, even when the information is presented in a table, it is not
easy to see the patterns in her client’s friendships.
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Graphical Representation of the Same Data
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Notes

v Each letter is the first letter of one of the client names.

v Each person is represented by a dot or vertex.

v There are 10 vertices in this graph.

v Two people who socially interact are connected by a line or edge.

v There are 12 edges in this graph.

v The vertices at the ends of an edge are called its endpoints, and edges
must always begin and end at vertices.

v We have a visual model or representation of the data, which often
helps us see relationships better.
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More Notes on Graphs

v A graph is a set of vertices (at least one) and edges, where each edge
connects vertices in the graph.

v Note that there is no vertex where edges merely cross, as DK and
GC did in the previous graph.

v The relative positions of the vertices and the lengths of the edges
have no significance.

v All that is important is the relationship between the vertices: which
are connected by edges, and which are not.

v Edges need not be drawn as straight lines — they may be curved.

v Why not draw two edges for each relationship — for example, one to
show that Claire plays with Sam, and another to show that Sam plays
with Claire?

Extra edges wouldn’t show any additional information in this case, and
would needlessly complicate the graph.
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Simple and Multi–Graphs

v Graphs which restrict the number of edges between any two vertices
to one are called simple graphs. Unless indicated otherwise, assume
the graphs we discuss are simple graphs.

v Graphs which allow multiple edges between the same vertices, as well
as permitting self–loops, are called multi–graphs.
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Important Definitions

v Two vertices are adjacent if they share an edge.

v An edge is incident to the two vertices which are its endpoints (and
not to any others).

v The degree of a vertex is the number of edges which are incident to
it.

v We can add the degrees of all the vertices and divide by two to
determine the number of edges in a graph.
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Degrees of Vertices

v What are the degrees of the vertices in the graph below?
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a b c d e
f g h i j
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Vertex Placement

The graph below may look different from the graph depicting the
friendship patterns earlier, but notice that although the vertices are
in different places, the graph still has edges between the same pairs
of vertices:
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Walks and Paths

v A walk in a graph is a sequence of vertices, each linked to the next
vertex by a specified edge of the graph.

v A path in a graph is a walk that uses no edge more than once.
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Walks:

Paths:
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Connectedness and Subgraphs

v A graph is connected if every pair of vertices in the graph is
connected by a path.

v A subgraph of a graph consists of a non-empty subset of the vertices
of the graph and 0 or more of the edges between those vertices.
(Edges which are adjacent to vertices outside the subset are not
allowed).

v The connected components of a graph are the collection of those
subgraphs containing all “reachable” vertices and their edges (and thus
which are connected).

A

J

MTK

S

G

D

C
E

© 2005–2009, N. Van Cleave 18



Graph Isomorphism
We say the two graphs are isomorphic to one another:
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Graph I Graph II

v Two graphs are isomorphic if there is a one–to–one correspondence
between vertices of the two graphs with the property that whenever
there is an edge between two vertices of either one of the graphs,
there is an edge between the corresponding vertices of the other
graph.

© 2005–2009, N. Van Cleave 19

Isomorphism
© Two graphs G = (VG, EG) and H = (VH, EH) are said to be isomorphic

if there exists a one–to–one onto mapping f : VG → VH 3
< u, w >∈ EG IFF < f(u), f(w) >∈ EH

© I.e., we can relabel the vertices of G to be vertices of H,
maintaining the corresponding edges in G and H;
pairs are adjacent in G IFF pairs are adjacent in H

1

6

2

3

45

U

V
W

X
Y

Z

Graph G Graph H

© The mapping from VG to VH given by
f(1) = u, f(2) = v, f(3) = w,
f(4) = x, f(5) = y, f(6) = z

is the requisite mapping.
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More on Isomorphism

© If we can find a matching between the vertices of two graphs
such that whenever there is an edge between vertices in one
graph, the corresponding vertices also share an edge, then the
graphs are isomorphic.

G Suppose vertex A in Graph1 maps to vertex Z in Graph2, and
vertex B in Graph1 maps to vertex Y in Graph2.

G Then if the edge AB exists in Graph1, the edge ZY exists in
Graph2, and vice–versa

G If there is no edge AB, then there is no edge ZY, and vice–versa
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Non–Isomorphic Graphs

© These two graphs are not isomorphic since deg(1) = 4, and no
vertex in graph H has degree 4.

HG
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5

© Note: degrees are preserved under isomorphism
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Isomorphic Subgraphs

© If we cannot find isomorphic subgraphs, then the graphs are not
isomorphic.

2 3

5

6 7

8

b c

e

f g

h

da 1 4

deg 2: b,d,f,h 3,4,8,7
deg 3: a,c,e,g 1,2,5,6

© Subgraphs containing these (deg 2) vertices must be isomorphic.
© No edges between b,d,f, or h (within same set), while edges
<3,4> and <7,8> exist. Therefore the two graphs are not
isomorphic.
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Requirements for Two Graphs to Be Isomorphic

v Isomorphic graphs must have the same:

© number of components

© number of vertices

© degrees of vertices

© number of edges

© subgraphs — vertices with the same degrees in the same
arrangements
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Are These Graphs Isomorphic?
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Are These Graphs Isomorphic?
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Are These Graphs Isomorphic?
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Which of These Graphs Are Isomorphic?
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Which of These Graphs Are Isomorphic?
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More on Graphs

A graph is connected if one can move from each vertex of the graph
to every other vertex of the graph along edges of the graph.

If a graph is not connected, it is said to be disconnected.

The connected pieces of a graph are called the components of the
graph.

It is helpful to use colors to determine the components of a graph:
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Edges And Degrees

Theorem. In any graph, the sum of the degrees of the vertices
equals twice the number of edges.

Example. A graph has precisely six vertices, each of degree 3. How
many edges does this graph have?

If a graph has 2 vertices, what is the maximum number of edges it
can have?

If it has 3 vertices?

4 vertices?

n vertices? (This would be a Kn or complete graph over n vertices)
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Bus Routes

Example. Suppose Greyhound bus provides direct bus links between
the following Illinois cities:

City Direct bus links with:
Rockford Chicago, Springfield
Chicago Rockford, Champaign
Champaign Chicago, Mattoon, Springfield
Paris Charleston
Springfield Rockford, Champaign
Mattoon Champaign, Charleston, Effingham
Charleston Mattoon, Effingham, Paris
Effingham Mattoon, Charleston
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Associated Graph
We can represent this information with a graph:

ChicagoRockford

Effingham

Springfield

Mattoon
Charleston

Paris

Champaign

Is this graph connected? What is the real–world significance in this
case?

© 2005–2009, N. Van Cleave 33

Walks in Graphs

What trips could we take among the destinations, using only direct
bus links? One possibility: Charleston–Mattoon–Champaign–Chicago
Other trips:

If we don’t mind riding the same bus route more than once, what
trips could we take?

A walk in a graph is a sequence of vertices, each linked to the next
vertex by a specified edge of the graph.

We can think of a walk as a route we can trace with a pencil without
lifting it from the graph.
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Paths in Graphs

A path in a graph is a walk that uses no edge more than once.

A path is a special kind of walk in which we don’t traverse the same
edge more than one time.

Which of our trips were paths?
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Circuits

A circuit in a graph is a path that begins and ends at the same
vertex.

A circuit is a kind of path, so therefore it is also a type of walk.
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Example. Using the graph below, classify each of the following
sequences as a WALK, a PATH, or a CIRCUIT.

G
H

A

D

F

C

B

E

Sequence Walk? Path? Circuit?
D–G–F–D
A–D–G–F–C
A–B–E–H–G–F–C–A
A–D–H–E–B–D–A
D–H–E–B–D
C–H–E–B–H–D–G–F–C
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Weighted Graphs
A graph with numbers on the edges (as shown below) is known as a
weighted graph. The numbers along the edges are called weights.

4 h 12 min

58 min

20 min

2 h

3 h 10 min

45 min

4 h 40 min

1 h 15 min

CharlestonMattoon
Springfield

Effingham

Rockford Chicago

Champaign

Paris
2 h 10 min

This graph represents the length of time the bus ride takes
between connected cities. It would be useful to know this when
attempting to plan a trip.
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Total Trip Time

How long would it take to go from Charleston to Mattoon to
Effingham?

From Charleston to Chicago?

From Paris to Chicago?

Round trip from Springfield to Charleston and back?
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Tournaments
Example. In a round–robin tournament, every team plays every
other team. The winners are the team who wins the most games.
Suppose six teams compete in such a tournament. How many
matches will be played all together? [Draw a sketch]

Now, Suppose that these teams play a double–elimination
tournament. How many matches will be played?
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Complete Graphs

A complete graph is a graph in which there is exactly one edge going
from each vertex to every other vertex in the graph.

Find a complete graph of 3 vertices, a K3, in the previous map.

Draw a K5, a complete graph over these 5 vertices:

A
B

C

E

D
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Complete Graphs — Degrees of Vertices

What is the degree of every vertex in a complete graph with:

3 vertices?

4 vertices?

5 vertices?

n vertices?
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Subgraphs

In general, a graph consisting of some of the vertices of the
original graph, and zero or more of the original edges between
those vertices, is known as a subgraph.

Vertices or edges not included in the original graph cannot be in the
subgraph.

A subgraph may include anywhere from one to all the vertices of
the original graph, and may include anywhere from none to all of the
edges of the original graph.
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Find some subgraphs in this graph

G
H

A

D

F

C

B

E
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Find A Subgraph. . .

1. with the fewest vertices

2. with the fewest edges

3. with the most vertices

4. with the most edges (the largest subgraph)

5. that’s a K3

6. that consists of two K3’s

7. that consists of three K3’s

8. that is not connected

9. that has three components
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