Mat 1160 WEEK 1

Dr. N. Van Cleave

Spring 2010

N. Van Cleave, ©2010

MAT 1160 — Mathematics, A Human Endeavor

- ▶ Syllabus: office hours, grading
- ► Schedule (note exam dates)
- ► Academic Integrity Guidelines
- ► Workbook/Summary, Homework & Quizzes
- ► Course Web Site :

www.eiu.edu/~mathcs/mat1160/

N. Van Cleave, © 2010

Course Overview

Development of mathematical reasoning and problem solving through concentrated study of a limited variety of topics

Course Objectives

This course should encourage and promote:

- 1. a positive attitude toward math,
- 2. successful experiences with math, and
- 3. greater clarity and precision when writing mathematics...

N. Van Cleave, ©2010

Suggestions for Success

- ▶ Attend all lectures (and exams!)
- ► Keep up with the workbook / summaries, and bring it to class in case of a quiz
- Count on spending at least 3 hours studying for every hour in lecture
- ► Seek help at first sign of trouble don't wait!
- ▶ Math tutors available see posted places and times
- ▶ Keep your lecture notes organized

N. Van Cleave, ©2010

Scientific American, January 2005

In one study, researchers had students write down what "went through their minds" when they were trying to get better grades.

Students who improved with each test were thinking:

- "I need to work harder"
- "I can learn this material if I apply myself"
- "I can control what happens to me in this class"
- "I have what it takes to do this"

Students who did not improve were thinking:

- "It's not my fault"
- "This test was too hard"
- "I'm not good at this"

Bottom line: Take personal control of your performance.

N. Van Cleave, © 2010

Course Topics

- ► Chap. 1 : The Art of **Problem Solving**
- ► Chap. 2 : The Basic Concepts of **Set Theory**
- ► Chap. 3 : Introduction to Logic (with supplements)
- ► Graph Theory handouts

Student Responsibilities - Week 1

► Reading:

This week: Textbook, Sections 1.1 & 1.2 Next week: Textbook, Sections 1.3 & 1.4

► Workbook: (neatly)

Summarize Sections

► Work through examples

N. Van Cleave, ©2010

Section 1.1: Solving Problems by Inductive Reasoning

Conjecture: a conclusion drawn from repeated observations of a particular process or pattern. The conjecture may or may not be true

Inductive Reasoning: drawing a **general** conclusion or conjecture from observing **specific** examples.

Counterexample: an example or case which disproves a conjecture.

Deductive Reasoning: applying general principles to specific examples.

N. Van Cleave, © 2010

Inductive Reasoning Examples

▶ Inductive: from **specific** observations to **general** conclusion

One type of problem which requires inductive reasoning is attempting to determine the next value in a pattern. For example:

What arrangement of the black dots should be placed in the fourth grid?

N. Van Cleave, ©2010

Inductive Reasoning Application: Number Patterns

Number sequence: an ordered list of numbers having a first number, a second number, a third number, and so on.

Example: 2, 4, 6, 8, 10, ...

Term: one of the numbers in a sequence.

Ellipsis: the three dots . . .

Arithmetic sequence: a number sequence which has a common

difference between successive terms.

Example: 1, 5, 9, 13, 17, 21, ...

Geometric sequence: a number sequence which has a common ratio between successive terms.

Example: 2, 4, 8, 16, 32, . . .

N. Van Cleave, ©2010

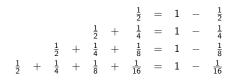
Number Pattern Examples

Determine the *probable* next number in each list:

- **▶** 3, 7, 11, 15, 19, 23, . . .
- **2**, 6, 18, 54, ...
- ▶ 1, 1, 2, 3, 5, 8, 13, 21, ... (Fibonacci Sequence)
- **▶** 1, 3, 9, 27, 81, . . .
- **▶** 3, 6, 9, 12, . . .

Predict the next equation:

N. Van Cleave, ©2010



How many days in February?

			January	/				
1	2	3	4	5	6	7		1
8	9	10	11	12	13	14	7	8
15	16	17	18	19	20	21	14	15
22	23	24	25	26	27	28	21	22
29	30	31					28	29

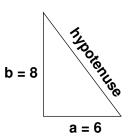
May						
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
20	20	20	21			

February									
			1	2	3	4			
5	6	7	8	9	10	11			
12	13	14	15	16	17	18			
19	20	21	22	23	24	25			
26	27	28	??	??	??				

Deductive Reasoning

Deductive Reasoning: the process of applying **general** principles (or rules) to **specific** examples.

Apply the Pythagorean Theorem to the right triangle with short sides of length 6 and 8.



 $a^2 + b^2 = hypotenuse^2$ $6^2 + 8^2 = hypotenuse^2$ $36 + 64 = hypotenuse^2$ $100 = hypotenuse^2$ 10 = hypotenuse

N. Van Cleave, © 2010

Inductive or Deductive?

- ▶ Inductive: from specific observations to general conclusion
- ▶ **Deductive**: from general principle to specific application
- It has been cold the past five days, and is cold today as well.
 So it will also be cold tomorrow.
- 2. Mandy has 9 stuffed toys. Bert gives her 5 more for her birthday. Therefore she now has 14 of them.
- 3. In the sequence 0, 3, 6, 9, 12,..., the most probable next number is 15.
- 4. My house is painted white. Both my neighbors houses are painted white. Therefore all the houses in my neighborhood are painted white.
- 5. The 3-inch cube of wood has a volume of 27 cubic inches.

N. Van Cleave, © 2010

Logical Arguments

Premise: an assumption, law, rule, widely held idea, or observation. The basis for our case or argument.

Conclusion: the result of applying inductive or deductive reasoning to the premise.

Together, the premise and conclusion make up a logical argument.

N. Van Cleave, ©2010

Premise(s), Conclusion(s), and Type of Reasoning

- ► All men are mortal. Socrates is a man. Therefore. Socrates is mortal.
- ▶ If you take your medicine you'll feel better. You take your medicine. You should feel better.
- It has been cold the past five days, and is cold today as well. So it will also be cold tomorrow.
- Mandy has 9 stuffed toys. Bert gives her 5 more for her birthday. Therefore she now has 14 of them.
- ▶ It is a fact that every student who ever attended this university has been fabulously successful. I am attending this university, so I can expect to be fabulously successful, too.
- ▶ If you build it, they will come. You build it. Hence, they will come

N. Van Cleave, ©2010

Sec 1.2 More on Number Patterns

- ► Arithmetic sequence: a number sequence which has a common *difference* between successive terms.
- Geometric sequence: a number sequence which has a common ratio between successive terms.

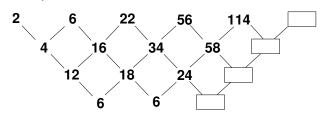
Method of successive differences: an algorithm to help determine the pattern in a number sequence. The steps are:

- 1. Find the differences between the first and second, second and third, third and fourth, ..., terms of the sequence
- 2. If the resulting numbers are not the same (constant) value, repeat the process on the resulting numbers
- Once a line of constant values is obtained, work backward by adding until the desired term of the given sequence is obtained.

N. Van Cleave, © 2010

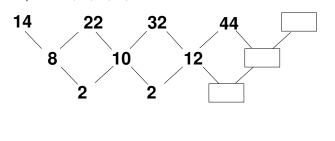
Lattice Example I

Given the sequence 2, 6, 22, 56, 114, \dots , find the next number in the sequence:



Lattice Example II

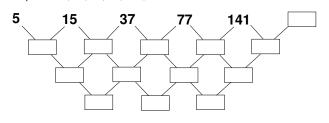
Sequence: 14, 22, 32, 44, ...



N. Van Cleave, ©2010

Lattice Example III

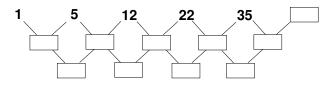
Sequence: 5, 15, 37, 77, 141, ...



N. Van Cleave, ©2010

Lattice Example IV

Sequence: 1, 5, 12, 22, 35, ...



N. Van Cleave, ©2010

Formulas

► Sum of the First *n* Odd Counting Numbers:

If n is any counting number,

the sum of the first n odd numbers is n^2 :

$$1+3+5+\ldots+(2n-1)=n^2.$$

Example. If n = 4, then 1 + 3 + 5 + 7 = 16, and $4^2 = 16$.

N. Van Cleave, ©2010

▶ Two Special Sum Formulas. For any counting number *n*:

The square of the sum of the first n counting numbers is the sum of the cubes of the numbers:

$$(1+2+3+\ldots+n)^2 = 1^3+2^3+3^3+\cdots+n^3$$

Example. If n = 4, then $(1 + 2 + 3 + 4)^2 = 10^2 = 100$, and 1 + 8 + 27 + 64 = 100 $\sqrt{}$

The sum of the first n counting numbers is:

$$1+2+3+\ldots+n=\frac{n(n+1)}{2}$$
.

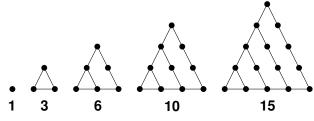
Example. If n = 4, then 1 + 2 + 3 + 4 = 10, and $\frac{4(5)}{2} = \frac{20}{2} = 10 \sqrt{}$

N. Van Cleave, ©2010

Figurate Numbers

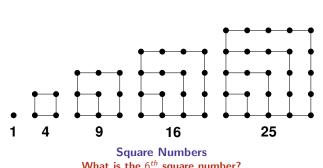
Geometric Arrangements of Points

Pythagoras & Greek mathematicians (c. 540 B.C.) studied properties of numbers and music.



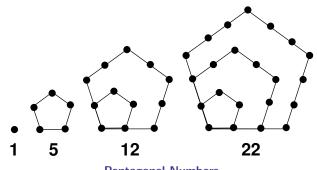
Triangular Numbers

What is the 6th triangular number? Can you draw the corresponding figure?



What is the 6th square number? Can you draw the corresponding figure?

N. Van Cleave, ©2010



Pentagonal Numbers

What is the 5^{th} pentagonal number? Can you draw the corresponding figure?

N. Van Cleave, ©2010

Figurate Number Formulas

For any natural number n, \ldots

- ▶ the *n*th triangular number is given by: $T_n = \frac{n(n+1)}{2}$
- ▶ the *n*th square number is given by: $S_n = n^2$
- ▶ the *n*th pentagonal number is given by: $P_n = \frac{n(3n-1)}{2}$
- ▶ the *n*th hexagonal number is given by: $H_n = \frac{n(4n-2)}{2}$
- ▶ the *n*th **heptagonal** number is given by: $Hp_n = \frac{n(5n-3)}{2}$
- ▶ the *n*th octagonal number is given by: $O_n = \frac{n(6n-4)}{2}$

What is the tenth heptagonal number? ____

The ninth pentagonal number?

The third octagonal number?