

Sec 2.5 Infinite Sets & Their Cardinalities

- Cardinal Number or Cardinality: of a finite set is the number of elements that it contains.
- One-to-one (1-1) Correspondence: the elements in two sets can be matched together in such a way that each element is paired with exactly one unique element from the other set.

N. Van Cleave, ©2010

Set Equivalence

- ▶ Two sets A and B are **equivalent**, (*A* ~ *B*), if they can be placed in a 1–1 correspondence.
- ℵ₀, Aleph-naught or Aleph-null, is the cardinality of the natural (or counting) numbers, { 1, 2, 3, ... }, a countably infinite set.
- If we can show a 1−1 correspondence between some set, A, and the natural numbers, we say that A also has cardinality ℵ₀.
- ► Thus, to show a set A has cardinality ℵ₀, we need to find a 1–1 correspondence between A and the set of natural numbers, N

N. Van Cleave, ©2010

Infinite Sets

- A set is infinite if it can be placed in a one-to-one correspondence with a proper subset of itself.
- Can we show that the set of integers has cardinality \aleph_0 ? Yes:

- ► Good Grief! We just showed that ℵ₀ = 2 × ℵ₀! The cardinality of the counting numbers is the <u>same</u> as the cardinality of the integers!
- There are just as many counting numbers as there are integers...

```
N. Van Cleave, ©2010
```

The correspondence begins...

$\frac{0}{1}$	\leftrightarrow	1	$\frac{1}{1}$	\leftrightarrow	2
$\frac{2}{1}$	\leftrightarrow	3	$\frac{1}{2}$	\leftrightarrow	4
$\frac{1}{3}$	\leftrightarrow	5	$\frac{1}{4}$	\leftrightarrow	6

- Numbers that are shaded are omitted since they can be reduced to lower terms, and were thus included earlier in the listing. (This is actually optional).
- The mapping of the positive Rational numbers to the natural numbers is a 1–1 correspondence, so it shows that the positive Rational numbers have cardinality N₀.
- By using the method in the example for the integers, we can extend this correspondence to include negative rational numbers.
- ▶ Thus, the set of rational numbers, Q, has cardinality ℵ₀.

N. Van Cleave, ©2010

N. Van Cleave, ©2010

- A set is **countable** if it is **finite** or if it has **cardinality** \aleph_0 .
- If a set is both countable and infinite, we call it countably infinite.

1 ↔ .**1**396875... 2 ↔ .4**8**13863... • We can show that the set of all real numbers, \Re , does **not** have 3 ↔ .75**2**7790... cardinality \aleph_0 (and in fact, is larger than \aleph_0) using a technique 4 ↔ .394**0**355... called diagonalization. $5 \leftrightarrow \ldots$ and on and on.... We will **assume** $|\Re| = \aleph_0$ and Next we construct a decimal number which cannot be a part of show this leads to a contradiction. this correspondence. **But** we assumed $|\Re| = \aleph_0$, so **every** decimal number **must** Since we assumed \Re is countably infinite, there is a 1–1 appear somewhere in the correspondence list! correspondence between it and \mathbb{N} (by definition). A Contradiction! N. Van Cleave. ©2010 N. Van Cleave. ©2010 Let us construct a decimal number, D, according to the following: 1. The first decimal number in the given list has 1 as its first digit; let *D* start as D = .2... Thus *D* cannot be the first number in the list. Now we get to ask: Is D in the list (that we assumed contained all decimals numbers?) 2. The second decimal in the list above has **8** as its second digit; let D = .29... Thus D cannot be the second number in the list. **NO**, since every decimal number in the list differs from D in at 3. The third decimal in the list has $\mathbf{2}$ as its third digit; let D =least one position, *D* cannot possibly be in the list!! ($\Rightarrow \Leftarrow$) .293... Thus *D* cannot be the third number on the list. 4. The fourth digit of the fourth decimal is $\mathbf{0}$, so let D =.2931...

5. Continue building D in this manner

N. Van Cleave, ©2010

N. Van Cleave, ©2010

Note:

 $1. \ \mbox{We}$ assumed \mbox{every} decimal number was in the list.

• Recall: $\Re = \{ x \mid x \text{ is a number that can be written as a decimal } \}$

2. But the decimal number D is **not** in the list.

This presents us with a Contradiction — i.e., these statements cannot both be true.

Thus our original assumption was incorrect:

It is <u>not</u> possible to find a 1–1 correspondence between \Re and \mathbb{N}

N. Van Cleave, ©2010

▶ The set of real numbers \Re has cardinality C (cardinality of the continuum), which is larger than \aleph_0 .

Thus some decimal number corresponds to the counting number 1,

another to 2, and so on. Suppose:

- \blacktriangleright The Power SET of \Re has cardinality even greater than c ...and it only gets worse from there.
- $\blacktriangleright~\mathbb{N},\mathbb{W},\mathbb{I},$ and \mathbb{Q} all have cardinality \aleph_0
- \blacktriangleright Irrational numbers and \Re have cardinality C.

N. Van Cleave, ©2010