
Chapter 7
Assembly Language

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-2

Human-Readable Machine Language
Computers like ones and zeros…

Humans like symbols…

Assembler is a program that turns symbols into
machine instructions.

•  ISA-specific:
close correspondence between symbols and instruction set
Ø mnemonics for opcodes
Ø labels for memory locations

•  additional operations for allocating storage and initializing data

ADD R6,R2,R6 ; increment index reg.

0001110010000110

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-3

An Assembly Language Program
;
; Program to multiply a number by the constant 6
;

 .ORIG x3050
 LD R1, SIX
 LD R2, NUMBER
 AND R3, R3, #0 ; Clear R3. It will
 ; contain the product.

; The inner loop
;
AGAIN ADD R3, R3, R2

 ADD R1, R1, #-1 ; R1 keeps track of
 BRp AGAIN ; the iteration.

;
 HALT

;
NUMBER .BLKW 1
SIX .FILL x0006
;

 .END

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-4

LC-3 Assembly Language Syntax
Each line of a program is one of the following:

•  an instruction
•  an assember directive (or pseudo-op)
•  a comment

Whitespace (between symbols) and case are ignored.
Comments (beginning with “;”) are also ignored.

An instruction has the following format:

LABEL OPCODE OPERANDS ; COMMENTS

optional mandatory

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-5

Opcodes and Operands
Opcodes

•  reserved symbols that correspond to LC-3 instructions
•  listed in Appendix A

Ø ex: ADD, AND, LD, LDR, …
Operands

•  registers -- specified by Rn, where n is the register number
•  numbers -- indicated by # (decimal) or x (hex)
•  label -- symbolic name of memory location
•  separated by comma
•  number, order, and type correspond to instruction format

Ø ex:
 ADD R1,R1,R3
 ADD R1,R1,#3
 LD R6,NUMBER
 BRz LOOP

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-6

Labels and Comments
Label

•  placed at the beginning of the line
•  assigns a symbolic name to the address corresponding to line

Ø ex:
 LOOP ADD R1,R1,#-1
 BRp LOOP

Comment
•  anything after a semicolon is a comment
•  ignored by assembler
•  used by humans to document/understand programs
•  tips for useful comments:

Ø avoid restating the obvious, as “decrement R1”
Ø provide additional insight, as in “accumulate product in R6”
Ø use comments to separate pieces of program

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-7

Assembler Directives
Pseudo-operations

•  do not refer to operations executed by program
•  used by assembler
•  look like instruction, but “opcode” starts with dot

Opcode Operand Meaning
.ORIG address starting address of program
.END end of program
.BLKW n allocate n words of storage

.FILL n allocate one word, initialize with
value n

.STRINGZ n-character
string

allocate n+1 locations,
initialize w/characters and null
terminator

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-8

Trap Codes
LC-3 assembler provides “pseudo-instructions” for
each trap code, so you don’t have to remember them.

Code Equivalent Description
HALT TRAP x25 Halt execution and print message to

console.
IN TRAP x23 Print prompt on console,

read (and echo) one character from keybd.
Character stored in R0[7:0].

OUT TRAP x21 Write one character (in R0[7:0]) to console.

GETC TRAP x20 Read one character from keyboard.
Character stored in R0[7:0].

PUTS TRAP x22 Write null-terminated string to console.
Address of string is in R0.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-9

Style Guidelines
Use the following style guidelines to improve
the readability and understandability of your programs:
1. Provide a program header, with author’s name, date, etc.,

and purpose of program.
2. Start labels, opcode, operands, and comments in same column

for each line. (Unless entire line is a comment.)
3. Use comments to explain what each register does.
4. Give explanatory comment for most instructions.
5. Use meaningful symbolic names.

•  Mixed upper and lower case for readability.
•  ASCIItoBinary, InputRoutine, SaveR1

6. Provide comments between program sections.
7. Each line must fit on the page -- no wraparound or truncations.

•  Long statements split in aesthetically pleasing manner.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-10

Sample Program
Count the occurrences of a character in a file.
Remember this?

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char
from keybd

(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to
ASCII character

(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-11

Char Count in Assembly Language (1 of 3)
;
; Program to count occurrences of a character in a file.
; Character to be input from the keyboard.
; Result to be displayed on the monitor.
; Program only works if no more than 9 occurrences are found.
;
;
; Initialization
;

 .ORIG x3000
 AND R2, R2, #0 ; R2 is counter, initially 0
 LD R3, PTR ; R3 is pointer to characters
 GETC ; R0 gets character input
 LDR R1, R3, #0 ; R1 gets first character

;
; Test character for end of file
;
TEST ADD R4, R1, #-4 ; Test for EOT (ASCII x04)

 BRz OUTPUT ; If done, prepare the output

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-12

Char Count in Assembly Language (2 of 3)
;
; Test character for match. If a match, increment count.
;

 NOT R1, R1
 ADD R1, R1, R0 ; If match, R1 = xFFFF
 NOT R1, R1 ; If match, R1 = x0000
 BRnp GETCHAR ; If no match, do not increment
 ADD R2, R2, #1

;
; Get next character from file.
;
GETCHAR ADD R3, R3, #1 ; Point to next character.

 LDR R1, R3, #0 ; R1 gets next char to test
 BRnzp TEST

;
; Output the count.
;
OUTPUT LD R0, ASCII ; Load the ASCII template

 ADD R0, R0, R2 ; Covert binary count to ASCII
 OUT ; ASCII code in R0 is displayed.
 HALT ; Halt machine

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-13

Char Count in Assembly Language (3 of 3)
;
; Storage for pointer and ASCII template
;
ASCII .FILL x0030
PTR .FILL x4000

 .END

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-14

Assembly Process
Convert assembly language file (.asm)
into an executable file (.obj) for the LC-3 simulator.

First Pass:

•  scan program file
•  find all labels and calculate the corresponding addresses;

this is called the symbol table
Second Pass:

•  convert instructions to machine language,
using information from symbol table

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-15

First Pass: Constructing the Symbol Table
1.  Find the .ORIG statement,

which tells us the address of the first instruction.
•  Initialize location counter (LC), which keeps track of the

current instruction.

2.  For each non-empty line in the program:
a)  If line contains a label, add label and LC to symbol table.
b)   Increment LC.

–  NOTE: If statement is .BLKW or .STRINGZ,
increment LC by the number of words allocated.

3.  Stop when .END statement is reached.

NOTE: A line that contains only a comment is considered an empty line.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-16

Practice
Construct the symbol table for the program in Figure 7.1
(Slides 7-11 through 7-13).

Symbol Address

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-17

Second Pass: Generating Machine Language
For each executable assembly language statement,
generate the corresponding machine language instruction.

•  If operand is a label,
look up the address from the symbol table.

Potential problems:

•  Improper number or type of arguments
Ø ex: NOT R1,#7

 ADD R1,R2
 ADD R3,R3,NUMBER

•  Immediate argument too large
Ø ex: ADD R1,R2,#1023

•  Address (associated with label) more than 256 from instruction
Ø can’t use PC-relative addressing mode

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-18

Practice
Using the symbol table constructed earlier,
translate these statements into LC-3 machine language.

Statement Machine Language
LD R3,PTR

ADD R4,R1,#-4

LDR R1,R3,#0

BRnp GETCHAR

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-19

LC-3 Assembler
Using “assemble” (Unix) or LC3Edit (Windows),
generates several different output files.

This one gets
loaded into the
simulator.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-20

Object File Format
LC-3 object file contains

•  Starting address (location where program must be loaded),
followed by…

•  Machine instructions

Example

•  Beginning of “count character” object file looks like this:

0011000000000000
0101010010100000
0010011000010001
1111000000100011

.

.

.

.ORIG x3000

AND R2, R2, #0

LD R3, PTR

TRAP x23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-21

Multiple Object Files
An object file is not necessarily a complete program.

•  system-provided library routines
•  code blocks written by multiple developers

For LC-3 simulator,
can load multiple object files into memory,
then start executing at a desired address.

•  system routines, such as keyboard input, are loaded
automatically
Ø loaded into “system memory,” below x3000
Ø user code should be loaded between x3000 and xFDFF

•  each object file includes a starting address
•  be careful not to load overlapping object files

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-22

Linking and Loading
Loading is the process of copying an executable image
into memory.

•  more sophisticated loaders are able to relocate images
to fit into available memory

•  must readjust branch targets, load/store addresses

Linking is the process of resolving symbols between
independent object files.

•  suppose we define a symbol in one module,
and want to use it in another

•  some notation, such as .EXTERNAL, is used to tell assembler
that a symbol is defined in another module

•  linker will search symbol tables of other modules to resolve
symbols and complete code generation before loading

