
Class Note 6

PHP Oracle Development

(Updated 7/2/2015)

Oracle Connection

The “class note” is the typical material I would prepare for my face-to-face class. I am sharing the notes

with everyone assuming you are in the class.

For the best result of your study, please make sure you do the following:

1. Read the chapter(s) in your textbook, corresponding to the week.

2. Read this class note. Please understand that I will only highlight the important points from your

chapters in the textbook. I do not intend to repeat it.

Now, here comes the most exciting part of this course: how to use PHP to access your Oracle database

so that you may present or manipulate the data on or through your web page? Before you are able to

do this, the first step is, of course, you have to have an Oracle database up and running.

I. Version(s) of Oracle Database

a. Oracle Enterprise Edition (Oracle 9i, 10g, 11g or 12c): If you have taken my TEC 5333

Advanced Database Technology or TEC 5363 Database Security and Reliability, chances are

you have already had Oracle Enterprise Edition (9i, 10g, 11g or 12c) installed in your

computer. You may just use the Oracle database as it is installed. In other words, if you

have Oracle installed in your computer already, you may just use it. No more sweat is

necessary. If you are patient enough, I will show you the trick to connect to the database in

the later part of this Class Notes.

b. If you have not installed Oracle database on your computer, you may select any of Oracle

database versions (Oracle 9i, 10g, 11g or 12c). If you have an old computer like my old

laptop (XP, 256MB RAM), Oracle 10g or 11g Express Edition will be ideal since it takes the

least amount of resources to run it. It does not slow down your computer. In other words,

any Oracle database will suffice for this class. If you have never done anything with Oracle

before, I recommend Oracle 10g or 11g Express Edition (as in your textbook).

c. If you have never done the installation of Oracle database, the first question you would

have is how do I can get the Oracle database. The answer is: you need to download it from

Oracle’s web site. EIU has a corporate license agreement with Oracle. Thus, you may be

able to download a whole range of Oracle products. The one you need will be Oracle

database (in any version of your choice) that is designed for your computer platform

(Windows, Linux, Unix, or Mac). You may have to register with Oracle. That is just one

hurdle you have to jump before you can download. There is no charge.

If you are lazy and do not even want to type “Oracle 10g Express Edition” on Google search,

you may use the following link to find the Oracle Express Edition:

http://www.oracle.com/technology/software/products/database/xe/index.html

II. Installation of Oracle Database

The detailed installation guide for Oracle 9i, 10g or 11g Enterprise Edition can be available in

the following course web sites for my previously mentioned classes.

http://www.eiu.edu/~pingliu/tec5323/Schedule/tec5323schedule.htm

or

http://www.eiu.edu/~pingliu/tec5363/Schedule/tec5363Schedule.htm

The following is my notes for my Oracle Express Edition installation, for your reference.

Notes for Oracle XE installation (on my old laptop):

Destination Folder: C:\oraclexe\

Port for 'Oracle Database Listener': 1521

Port for 'Oracle Services for Microsoft Transaction Server': 2030

Port for HTTP Listener: 8080

Please make sure to take note on you SYSTEM password.

http://www.oracle.com/technology/software/products/database/xe/index.html
http://www.eiu.edu/~pingliu/tec5323/Schedule/tec5323schedule.htm
http://www.eiu.edu/~pingliu/tec5363/Schedule/tec5363Schedule.htm

After installation, you may test to see of your Oracle XE works.

Run SQL Plus to Test Your Oracle 10g Express Edition

Start—All Programs—Oracle Database 10g Express Edition--Run SQL Command Line, as follows.

You will then see the following screen:

If you see the above screen shot, that means your Oracle Express Edition has been installed

successfully.

III. Tricks and Trouble Shooting for Database Connection

You will need to do something to ensure you are able to connect to Oracle database using

your PHP program. The following list those factors. If you are lucky enough, some of the

issues have already been resolved automatically during installation. If you are not that lucky,

you may follow those steps. It is going to be a good learning experience.

a. Oracle database has to be up and running. You cannot talk to a dead person.

The above example of running SQL Plus can be one of the ways to know if your database is

running or not. If you are able to login your database using user: SYSTEM and password (as

you entered during your installation), you will see something similar to the above screen

shot.

Depending on your version and your operating system, the way of login your SQL Plus may

be slightly different. The following shows you one example on how I login in SQL Plus in

Oracle 11g (on my desk top).

The general syntax is:

C:\sqlplus system/password;

If you forget your password for the SYSTEM schema/user, you may have to call me or

someone else in the class. We will help you out as long as you promise to return the favor

some day.

For Windows User: Another way to know if your Database is running or not is to use Control

Panel and Services, as in the following example:

If you see “OacleServiceORACLE” is “started,” you are ready to go. Of course, depending on

how you named your database during installation, your service name may be different. (I

named my database instance as “ORACLE” during installation, as you can see from the

above example.)

When any students approached me in the past, saying “I cannot connect to Oracle

database.” or “I have error from my database.” The first question I ask is always “are you

sure your database is up and running?”

b. Your TNS Listener (from Oracle) has to on: You cannot talk to a deaf.

The fist way to know if the Oracle TNS Listener has been started is to go to Control Panel

and Services (for Windows).

You can see from the above that my TNS listener is up and running. If your TNS Listener is

not running yet, you need to trouble shoot and make sure the TNS listener is up before you

can use your PHP program to test the Oracle connection.

Another way is to use the command line command from Oracle, known as “lsnrctl.” The

following screen shot shows you an example.

You may use:

C:\lsnrctl status

To see the status of your TNS Listener.

The “lsnrctl” is a utility that comes from Oracle. It applies to any operating system platform.

Another useful utility (from Oracle) that will be handy for trouble shooting Oracle

connection is: tnsping. For example, if you have a database called “oracle,” and if you want

to see if and how your TNS listener communicate with your database, you may issue:

C:\tnsping oracle

The above “lsnrctl” and “tnsping” utilities will give you plenty of information to trouble

shoot your Oracle connection.

The trouble shooting of TNS listener will require some extensive experience, especially if you

had problems during installation. Contact me If you could not resolve the TNS listener issue.

c. You have to have something in your database so that you may ask Oracle database.

To do that, you need to create an Oracle account, as follows (for Windows):

C:\sqlplus system/password

Once you are able to login Oracle SQL Plus, you will see something similar to the following:

Here I used a SQL command “show user” to confirm that I have logged in as “SYSTEM.” The

“SYSTEM” user will allow you to create other users such as “php.”

Now, you are ready to create a user called “php” with a password “php”, as in your textbook,

on page 44.

SQL> CREATE USER php IDENTIFIED BY php;

You may then grant some necessary privileges to the user “php” so that “php” can login the

database.

SQL> GRANT resource, connect TO php;

Once the above grant is successful, you should be able to login as “php” with a password

“php.”

SQL>connect php/php;

The user (“php”) and password (“php”) will be used now to test if your PHP program can talk

to the Oracle database.

d. The above tasks are meant to make sure your Oracle database is alive before anyone

(including your PHP program) can communicate with the database. Now, we need to make

sure that the PHP engine understands the communication protocol or language. The

communication between PHP and Oracle is handled by OCI8 (Oracle Call Interface 8). OCI8

is your agent who negotiates between Oracle and PHP.

OCI8 came with your Zend Server as you have already installed earlier this semester. But,

you need to make sure it is on in your PHP engine. To do it, please login your Zend Server,

as follows:

Please note: The following example is for Zend Server Community Edition. As of this writing

on June 5, 2015, Zend offers a Developer Edition. It may vary slightly from the following

procedure. But, the idea remain similar. Use it as your reference.

If your installation is similar to mine, you may access the Zend Server with the following link:

http://localhost/ZendServer/Login

Once you login the Zend Server, you will see something like:

http://localhost/ZendServer/Login

You can then drill to Server Setup, Extensions, and find OCI8, as follows:

Turn on OCI8, and “Restart PHP.” Your communication agent is awake and working for you.

e. Your parameters in PHP have to be correct. You have to speak to the same language

(English, Chinese, Hindi or others) as you talk to others.

I am going to ask you to use the OracleStandardConnection.php (pages 351-352) to test if

you are able to connect to your Oracle database. To prepare you for more complex projects

in the future, however, I am going to ask you to slightly modify the above code.

$schema=’php’; //The schema defines the user name you like to access in Oracle database

$password=’php’; //It defines the password of the above schema/user

$database=’xe’; //It defines the database (instance) name

Those are the three parameters that you will use to communicate with Oracle database.

Your OracleStandardConnection.php code can be modified as:

../../resource_cd/Code/Chapter13/code/OracleStandardConnection.php
../Project/test/OracleStandardConnection.php

<?php

$schema=’php’; //The schema defines the user name you like to access in Oracle database

$password=’php’; //It defines the password of the above schema/user

$database $database=’xe’; //It defines the database (instance) name

if ($c=@oci_connect($schema,$password,$database))

{

Print "Successfully connected to Oracle database.
";

oci_close($c);

}

else

{

$errorMessage=oci_error();

print '<table border="1" cellpadding="0" cellspacing="0">';

foreach ($errorMessage as $name=>$text)

{

print '<tr><td>'.$name.'</td>';

print '<td>'.$text.'</td></tr>';

}

print '</table>';

}

?>

If you installed Oracle 10g Express Edition, chances are the above code may produce the

result you like, as in the following figure.

If you are not lucky enough yet, you may have to do some more work, before you can

declare a victory. Here are the possibilities, assuming that you have followed all the steps

above:

a. If you have installed Oracle 10g, 11g Express Edition, the code still gives you error

message such as the following:

You may redefine your $database variable as:

$database=’localhost/xe’;

That was the case on my laptop.

b. If you installed Oracle 9i, 10g, 11g or 12c Enterprise Edition, the most reliable way is to

use “tnsping” utility to get the database connection string, as follows:

If you see your tnsping is successful, that means that all communication channel to Oracle

database base is clear. The “OK (20 msec)” is a good news for you. Then, you may use the

database string to redefine your $database variable, as:

$database=’ (DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP)(HOST

= 154862EIU.eiuad.eiu.edu)(PORT =1521))) (CONNECT_DATA = (SERVER =

DEDICATED) (SERVICE_NAME = oracle) (INSTANCE_NAME = oracle)))’;

If you follow the above steps, the above approach will never fail. Good luck.

Challenge: There are other ways to find out the database connection string above. One way

is to look for the string in tnsnames.ora file. I hope you can find the file in your computer.

Then, you can copy the connection string. Just do not change the file.

IV. To Prepare for the Future

Now, you have made the connection with Oracle database successfully. Your PHP code will

look like the following if you have installed Oracle Enterprise Edition.

<?php

$schema='php'; //The schema defines the user name you like to access in Oracle database

$password='php'; //It defines the password of the above schema/user

$database="(DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP)(HOST =

154862EIU.eiuad.eiu.edu)(PORT =1521))) (CONNECT_DATA = (SERVER = DEDICATED)

(SERVICE_NAME = oracle) (INSTANCE_NAME = oracle)))";

//It defines the database (instance) name

if ($c=@oci_connect($schema,$password,$database))

{

Print "Successfully connected to Oracle database.
";

oci_close($c);

}

else

{

$errorMessage=oci_error();

print '<table border="1" cellpadding="0" cellspacing="0">';

foreach ($errorMessage as $name=>$text)

{

print '<tr><td>'.$name.'</td>';

print '<td>'.$text.'</td></tr>';

}

print '</table>';

}

?>

This seems to be very easy and straight forward. Nonetheless, what if you have 200 PHP

programs that need to connect to Oracle database, how can you do it (to define the

database connection parameters)? Of course, at the beginning, you could elect to copy and

paste the parameters to those 200 PHP files. That does not seem to be too difficult, either.

You can do it with a little sweat.

What if after two years, a new database administrator in your organization decides to

upgrade your system. As a result of the upgrade, the database is named as “oracle1” from

the old name “oracle.” What do you do with those 200 PHP files with such as a slight

change? Chances are if I do not document them well, I will not be able to find those 200

files easily. Of course, your new system will end up with a lot of problems after the upgrade.

Your customers including your boss and your wife/husband will not be happy. This is a

typical issue of “scalability.”

In order to make your PHP/Oracle system easily scalable in the future, you can define your

Oracle database parameters in a single file. For the purpose, I am going to ask you to name

this file as “oracle_parameters.php”.

 Now, what I am asking you to do is to move the three lines of Oracle connection

parameters into a separate PHP file, named as “oracle_parameters.php,” and place this file

in the same document root as your main PHP program. Your

OracleStandardConnection.php code will look like as follows:

<?php

include_once("oracle_parameters.php");

if ($c=@oci_connect($schema,$password,$database))

{

Print "Successfully connected to Oracle database.
";

oci_close($c);

}

else

{

$errorMessage=oci_error();

print '<table border="1" cellpadding="0" cellspacing="0">';

foreach ($errorMessage as $name=>$text)

{

print '<tr><td>'.$name.'</td>';

print '<td>'.$text.'</td></tr>';

}

print '</table>';

}

?>

Now, as a project for this week, you will be creating the parameter file

(oracle_parameters.php) based upon your own computer system, and make the above code

work for you.

I have tested on my computer system. It is now your turn. Have fun.

