
Class Note 7

PHP Oracle Development

(Updated 6/4/2015)

Oracle Query and Bind Variables

The “class note” is the typical material I would prepare for my face-to-face class. I am sharing the notes

with everyone in the class.

For the best result of your study, please make sure you do the following:

1. Read the chapter(s) in your textbook, corresponding to the week.

2. Read this class note. Please understand that I will only highlight the important points from your

chapters in the textbook. I do not intend to repeat it.

3. Study the “Review Questions” for each week. I intend to combine the chapter content and class

notes in the “Review Questions” section. Many of the concepts can be better understood if you

fully understand the “Review Questions.”

I. Prepare Your Database for the Class

In order for us to do the exercises and your project for this week, you need to set up you

database so that it has the tables to used in this class. Some of the details may be trivial if

you have already taken a class on Oracle database. But, I am going to do it any way for

those students who are fresh to Oracle.

a. The first step is you need to log in your Oracle SQL Plus in your computer, using user name: SYSTEM

and the password you entered while installing your Oracle database.

After you log in as SYSTEM, you may issue the following SQL command:

SQL>show user;

You will confirm that you have logged in as SYSTEM.

If you do not remember it, you may ask others on Geeks Corner.

b. You need to create the user “php” in your account. If you follow the class notes last week and you

did your project successfully, you have already accomplished this step. Just in case, it is not a bad

idea to refresh your database anyway.

To create the “php” user, you may use the SQL script that comes with your textbook. The script you

need is from Appendix G. Please note that the CD has another file with the same file name. But,

that file is not for this purpose.

Now, to run the user creation script (create_user.sql in Appendix G), you may issue a

SQL statement, similar to the following:

SQL> @C:\PingLiu\web\php\resource_cd\Code\AppendixG\code\create_user.sql

Please note that your file path may be different from mine above.

(@C:\PingLiu\web\php\resource_cd\Code\AppendixG\code is the folder
in my computer where the script was kept.)

If everything goes well, you will see something similar to my screen shot, as follows:

 That means, the “php” user was created. The password for the “php” user is “php.”

c. At this point, your “php” user (schema) has nothing (neither tables nor data). You need to create

tables and populate the tables with data.

It is super critical that you log in as “php” before you create the tables. You need to issue:

../../resource_cd/Code/AppendixG/code/create_user.sql

SQL> connect php/php;

After the “ php” is connected to the database, you may run the script (create_store.sql)

SQL> @C:\PingLiu\web\php\resource_cd\Code\AppendixJ\code\create_store.sql

Please note if the script was kept in Appendix J from the textbook CD.

(Note for Geeks: If you are trained as a system administrator, you should modified the above script

for its spooling function as follows:

SPOOL c:\temp\create_store.log

I like to add c:\temp\ so that the file will be spooled to the temp directory instead of C:\. If you do

not care, that is fine.)

Now, if you issue the following statement to SQL Plus:

SQL>select * from tab;

You will see those tables you have just created. Nonetheless, those tables are still empty with no

data. You may insert (populate) data into those tables using the following script:

SQL>@C:\PingLiu\web\php\resource_cd\Code\AppendixJ\code\seed_store.sql

Please note if the script was kept in Appendix J from the textbook CD.

If you examine the output (either on screen or the spooled file), you will see there is one view that

was not created, as intended by the script. I will wait if someone in the class likes to resolve the

problem. For the time being, it does not affect our work.

The following SQL statements will be handy if you want to see the content of tables:

SQL> desc item;

You will see the table structure including column names from the “item” table.

SQL> select * from item;

You will see the content of “item” table. It may not be pretty if the table is huge.

../../resource_cd/Code/AppendixJ/code/create_store.sql
../../resource_cd/Code/AppendixJ/code/seed_store.sql

SQL> select item_id, item_type, item_title from item;

You will see only the selected columns such as item_id, item_type, and item_title.

Now, the database is ready for action.

II. Query on Oracle Database

To learn how to query a database, we are going to start with the example in your textbook,

SelectItemRecords.php. But, we will make some changes based upon what we have learned

from previous week.

We will use the file oracle_parameters.php to define your connection parameters. As we recall, the

oracle_parameters.php is shown below, using my computer as an example:

<?php

//The schema defines the user name you like to access in Oracle database

$schema='php';

//It defines the password of the above schema/user

$password='php';

//It defines the database (instance) name

$database='(DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP)(HOST =

154862EIU.eiuad.eiu.edu)(PORT =1521))) (CONNECT_DATA = (SERVER = DEDICATED) (SERVICE_NAME =

oracle) (INSTANCE_NAME = oracle)))';

?>

Your “$database” string may be different depending upon your settings. Refer the notes from previous

week.

../../resource_cd/Code/Chapter13/code/SelectItemRecords.php

Thus, the code will be modified as follows:

<?php

include ('oracle_parameters.php');

 // Connect to the database.

 if ($c = @oci_connect("$schema","$password","$database")) {

 // Parse a query to a resource statement.

 $s = oci_parse($c,"SELECT i.item_id id

 , i.item_barcode as barcode

 , c.common_lookup_type as type

 , i.item_title as title

 , i.item_rating as rating

 , i.item_release_date release_date

 FROM item i inner join common_lookup c

 ON i.item_type = c.common_lookup_id

 WHERE c.common_lookup_type = 'XBOX'

 ORDER BY i.item_title");

 // Execute query without an implicit commit.

 oci_execute($s,OCI_DEFAULT);

 // Open the HTML table.

 print '<table border="1" cellspacing="0" cellpadding="3">';

 // Read fetched headers.

 print '<tr>';

 for ($i = 1;$i <= oci_num_fields($s);$i++)

 print '<td class="e">'.oci_field_name($s,$i).'</td>';

 print '</tr>';

 // Read fetched data.

 while (oci_fetch($s))

 {

 // Print open and close HTML row tags and columns data.

 print '<tr>';

 for ($i = 1;$i <= oci_num_fields($s);$i++)

 print '<td class="v">'.oci_result($s,$i).'</td>';

 print '</tr>';

 }

 // Close the HTML table.

 print '</table>';

 // Disconnect from database.

 oci_close($c);

 }

 else

 {

 // Assign the OCI error and format double and single quotes.

 $errorMessage = oci_error();

 print htmlentities($errorMessage['message'])."
";

 }

?>

Please note the changes:

a. Added on include statement:

include ('oracle_parameters.php');

b. Changed the database connection:

if ($c = @oci_connect("$schema","$password","$database"))

The output of the above code will look something similar to the following:

My point was just to show you that I tested everything before I say it. That is a trait of being

trained as an engineer. Just kidding, but seriously.

Now, let us get serious and spend a few seconds to understand what does the above code

do, step-by-step.

a. ($c = @oci_connect("$schema","$password","$database"): It connects to the Oracle

database defined by user name ($schema), password for user ($password), and the

database connection string ($database).

You now have seen the word oci_ in the statement since it is an OCI8 function.

b. $s = oci_parse($c,"SELECT …): It puts the SQL (Structured Query Language) statement

(stuff within the double quote) in the computer memory. The fancy term is to parse the

SQL statement. Just imagine that the SQL statement was checked to see it has any

syntax problems and then store the SQL statement for action.

Do not be intimidated by the SQL statement within the double quote. They are beyond

the scope of this course. If you still want to know, you may ask those who took TEC

5323 Advanced Database Technology. (See more details below. In the meantime, focus

on the OCI logic flow to get a solid understanding on it.)

c. oci_execute($s,OCI_DEFAULT); It runs the above SQL statement, query in this case.

d. “for ($i = 1;$i <= oci_num_fields($s);$i++)” and “print '<td

class="e">'.oci_field_name($s,$i).” The first for loop print out the column names. Here

it uses “oci_num_fields ()” and “oci_field_name”. You can see here the roles of the two

functions are pretty self-explanatory.

e. While loop: It prints out the results from the above SQL statement. It uses oci_result ()

function.

f. oci_close(): It closes the connection after the query is done.

g. Error message was handled by the following code:

 $errorMessage = oci_error();

 print htmlentities($errorMessage['message'])."
";

You may test it by making some change in the SelectItemRecord.php code to see how

the error message is displayed. It will help you to debug your program in the future.

Structured Query Language (SQL) Statement

In practical database programming, once you have done once and fully understand the

sequence such as the above, you will find it pretty straight forward to work with the

database through your programming language (PHP in this case). Since most

programmers know the language well, they sometimes have difficulty in debugging and

performing quality assurance of the software system. Most of the visible and invisible

errors come from the SQL statement used with PHP program.

My only suggestion for the above challenge is to test the SQL statement before you put

it in the PHP program. Let us use the above PHP code as one example. The SQL

statement in the oci_parse () statement is:

SELECT i.item_id id

 , i.item_barcode as barcode

 , c.common_lookup_type as type

 , i.item_title as title

 , i.item_rating as rating

 , i.item_release_date release_date

 FROM item i inner join common_lookup c

 ON i.item_type = c.common_lookup_id

 WHERE c.common_lookup_type = 'XBOX'

 ORDER BY i.item_title

Please note that I have stripped off the double quotes and other stuff outside the SQL

statement. Moreover, I kept the original spaces, which do not affect the actual

programming.

The most important thing you need to make sure is that the SQL statement does exactly

what you want it to do. The main suggestion I have is the same as I always give: test it.

Here I am talking about testing with the database (not your PHP program).

To test the SQL statement, of course, you need to log in your SQL Plus. One simple way

is to issue a SQL command as follows:

SQL>ed (enter)

After you enter the above command, SQL Plus will invoke a text editor in your computer.

In Windows, the default text editor is notepad. Vi editor is the default for Unix system.

Those default settings can be changed or customized as you wish.

You may then copy your SQL statement to the text editor and make whatever changes

you like. After the changes, you may save it and exit from the text editor.

 Upon exit from the text editor, you will be going back to Oracle SQL Plus. Then you

can issue another command to run the SQL statement, as follows:

SQL>/

You will see the results on your SQL Plus screen.

The above display seems to be out of place a little. That is only the format issue. If you

like to have a nice display of the results. You may try the following SQL commands:

SQL> column type format a5;

SQL> column id format 9999;

You may see something a little better organized.

The point is that you need to test the SQL statement, not only for the syntax errors but

also for the accuracy of the programming. If the SQL statement gives you incorrect

results, there is no way you can tell. I have seen this multiple times.

Simple User Authentication Application

Now, I am going to use a simpler example, hoping that you may be able to create your

own web application in near future.

Let us create a table called “user_table”, in which we like to store some basic user

information including first name, last name, user name on the system, and the password.

As an example, we use the following script to create the table and insert data for one

user.

create table user_table (

id number (8) not null,

first_name varchar2(15),

last_name varchar2(15),

user_name varchar2(15),

password varchar2(15));

insert into user_table values(

1, 'London', 'Donovan', 'ldonovan','myhero');

commit;

Since I created and saved the above code in my

“C:\PingLiu\web\php\course\Project\test\” folder. I can run it as follows:

SQL>@C:\PingLiu\web\php\course\Project\test\user.sql.

After running the above script, you will be able to see the data using SQL Plus.

../Project/test/user.sql

Now, if we change the above PHP code (I saved it as SimpleSelection.php) with the

following SQL statement.

select * from user_table;

The code becomes:

<?php

include ('oracle_parameter.php');

 // Connect to the database.

 if ($c = @oci_connect("$schema","$password","$database"))

 {

 // Parse a query to a resource statement.

 $s = oci_parse($c,"SELECT * from user_table");

../Project/test/SimpleSelect.php

 // Execute query without an implicit commit.

 oci_execute($s,OCI_DEFAULT);

 // Open the HTML table.

 print '<table border="1" cellspacing="0" cellpadding="3">';

 // Read fetched headers.

 print '<tr>';

 for ($i = 1;$i <= oci_num_fields($s);$i++)

 print '<td class="e">'.oci_field_name($s,$i).'</td>';

 print '</tr>';

 // Read fetched data.

 while (oci_fetch($s))

 {

 // Print open and close HTML row tags and columns data.

 print '<tr>';

 for ($i = 1;$i <= oci_num_fields($s);$i++)

 print '<td class="v">'.oci_result($s,$i).'</td>';

 print '</tr>';

 }

 // Close the HTML table.

 print '</table>';

 // Disconnect from database.

 oci_close($c);

 }

 else

 {

 // Assign the OCI error and format double and single quotes.

 $errorMessage = oci_error();

 print htmlentities($errorMessage['message'])."
";

 }

?>

The result of the PHP code will be similar to the following:

Now, what if we change the SQL statement within the above PHP code to:

SELECT user_name, password from user_table

You will be able to find out the user name and password only.

Certainly, at this point, we feel we can use PHP program to talk to Oracle database and get

data out of the database.

Let us go a little further, to make the following change:

SELECT password from user_table WHERE user_name=’ldonovan’

That is, if we specify the user_name (for example, “ldonovan”), we will be able to find and

compare with its password. That is a part of login or authentication. It gets more exciting.

III. Oracle Bind Variables

In the above section, by using the following SQL statement:

SELECT password from user_table WHERE user_name=’ldonovan’

We could get the password for the user “ldonovan”.

If you try the following SQL statement,

SELECT password from user_table WHERE user_name=’thoward’

It will give us nothing since the user “thoward” did not exist in the table.

What the above actions tell us is that in our PHP program, we could SPECIFY the SQL condition to get the

information we want, in the above examples, to get the passwords of two users (“ldonovan” and

“thoward”).

The trick now is how do we SPECIFY the condition? Do you want to your user to go in your PHP code

and make similar changes as we did? Of course, the above activities were meant only for learning

purpose. Oracle’s answer to the challenge is to use “bind variables.” You may read more descriptions

about the bind variables from your textbook on pages 379-388.

We will use the above simple PHP code, to illustrate the concept. With the introduction of bind variable,

the above PHP code becomes something as follows:

<?php

//include the Oracle connection parameter file.

include ('oracle_parameters.php');

//define the PHP input variable ($username)

$username='ldonovan';

 // Connect to the database.

 if ($c = @oci_connect("$schema","$password","$database"))

 {

 // Parse a query to a resource statement. An Oracle bind variable is used

(:username).

 $s = oci_parse($c,"SELECT password from user_table WHERE user_name=:username");

//Connect (Bind) the PHP input variable ($username) with Oracle bind variable

(:username).

oci_bind_by_name($s, ":username", $username, -1, SQLT_CHR);

 // Execute query without an implicit commit.

 oci_execute($s,OCI_DEFAULT);

 // Open the HTML table.

 print '<table border="1" cellspacing="0" cellpadding="3">';

 // Read fetched headers.

 print '<tr>';

 for ($i = 1;$i <= oci_num_fields($s);$i++)

 print '<td class="e">'.oci_field_name($s,$i).'</td>';

 print '</tr>';

 // Read fetched data.

 while (oci_fetch($s))

 {

 // Print open and close HTML row tags and columns data.

 print '<tr>';

 for ($i = 1;$i <= oci_num_fields($s);$i++)

 print '<td class="v">'.oci_result($s,$i).'</td>';

 print '</tr>';

 }

 // Close the HTML table.

 print '</table>';

 // Disconnect from database.

 oci_close($c);

 }

 else

 {

 // Assign the OCI error and format double and single quotes.

 $errorMessage = oci_error();

 print htmlentities($errorMessage['message'])."
";

 }

?>

For the sake of discussion, I renamed the PHP code as SimpleBind.php. Let us look at the steps of using

bind variable.

a. The first step is you need to define a PHP input variable. In the above program, we used the

following:

//define the PHP input variable ($username)

$username='ldonovan';

Here, we defined a PHP variable called $username. In web programming, this variable may be

defined and passed from previous HTML form, as we did in the chapter dealing with function.

The above definition is just the simplest example of defining a PHP variable.

b. The second step is to use (define) an Oracle bind variable within your SQL statement. In the

above example, we used:

../Project/test/SimpleBind.php

// Parse a query to a resource statement. An Oracle bind variable is used

(:username).

 $s = oci_parse($c,"SELECT password from user_table WHERE

user_name=:username");

Here we used a bind variable called :username. Please note the difference among those

variable names we have used to refer to the same thing including:

$username is a PHP variable.

:username is an Oracle bind variable.

user_name is the column name (data field) in Oracle database table “user_table”

Clear understanding on the above three things is very essential for your actual programming.

c. The third step is connect the above two variables together.

//Connect (Bind) the PHP input variable ($username) with Oracle bind variable

(:username).

oci_bind_by_name($s, ":username", $username, -1, SQLT_CHR);

where we used an Oracle function known as “oci_bind_by_name()” to do the trick. “$s” refers

the query we parsed earlier. We map the two variables (“:username” and “$username”)

together by using the oci_bind_by_name() function.

The rest of the story is the same as before. Your resulting output will be like the following:

To make use of the above script for authentication purpose, I am going to modify the above the

PHP program by adding some control structure. For example, we can define a PHP variable

called $userpwd and compare the variable with the query result from the database table

(user_table). After stripping off some of the printing format tags, here is the sample code for

fun.

<?php

//include the Oracle connection parameter file.

include ('oracle_parameter.php');

//define the PHP input variables ($username and $userpwd)

//The variables can be defined from a HTML file or in other ways.

$username='ldonovan';

$userpwd='myhero';

// Connect to the database.

if ($c = @oci_connect("$schema","$password","$database"))

 {

// Parse a query to a resource statement. An Oracle bind variable is used

(:username).

../Project/test/SimpleBindFun.php

 $s = oci_parse($c,"SELECT password from user_table WHERE

user_name=:username");

//Connect (Bind) the PHP input variable ($username) with Oracle bind variable

(:username).

oci_bind_by_name($s, ":username", $username, -1, SQLT_CHR);

// Execute query without an implicit commit.

oci_execute($s,OCI_DEFAULT);

// Read fetched data.

 while (oci_fetch($s))

 {

 for ($i = 1;$i <= oci_num_fields($s);$i++)

//print '<td class="v">'.oci_result($s,$i).'</td>';

if ($userpwd==oci_result($s,$i))

{

print "The user matches his/her password.";

}

 }

// Disconnect from database.

oci_close($c);

}

 else

 {

// Assign the OCI error and format double and single quotes.

 $errorMessage = oci_error();

 print htmlentities($errorMessage['message'])."
";

 }

?>

What we did was we simply utilize the query results from the database table, as in the following block:

//The variables can be defined from a HTML file or in other ways.

$username='ldonovan';

$userpwd='myhero';

…

if ($userpwd==oci_result($s,$i))

{

print "The user matches his/her password.";

}

…

The result of the code will be as follows:

The above simple example is not to the professional grade of program yet. But, it points out the

potential and direction for future applications. Sky is the limit for future. We will learn how to fly.

Have fun.

